Patents by Inventor Dennis M. O'Dea

Dennis M. O'Dea has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10683801
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: March 13, 2017
    Date of Patent: June 16, 2020
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 10570793
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and separating the exhaust into rich CO2 and lean CO2 streams. In one or more embodiments, the exhaust is separated at an elevated pressure, such as between a high-pressure expansion stage and a low-pressure expansion stage.
    Type: Grant
    Filed: November 15, 2016
    Date of Patent: February 25, 2020
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Sulabh K. Dhanuka, Richard A. Huntington, O. Angus Sites, Dennis M. O'Dea, Russell H. Oelfke
  • Patent number: 9863267
    Abstract: A system includes plurality of combustors and a distributed flow measurement system coupled to the plurality of combustors. Each combustor of the plurality of combustors includes one or more oxidant passages and one or more fuel passages. The distributed flow measurement system is configured to measure an oxidant flow rate for a respective oxidant passage of the one or more oxidant passages of the respective combustor based at least in part on an oxidant pressure drop along the respective oxidant passage, and the distributed flow measurement system is configured to measure a fuel flow rate for a respective fuel passage of the one or more fuel passages of the respective combustor based at least in part on a fuel pressure drop along the respective fuel passage.
    Type: Grant
    Filed: January 19, 2015
    Date of Patent: January 9, 2018
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Dennis M. O'Dea, Karl Dean Minto, Richard A. Huntington, Sulabh K. Dhanuka, Franklin F. Mittricker
  • Publication number: 20170184021
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: March 13, 2017
    Publication date: June 29, 2017
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Patent number: 9689309
    Abstract: Systems, methods, and apparatus are provided for generating power in combined low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust from multiple turbine systems is combined, cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream. Portions of the recycled exhaust streams and the product streams may be used as diluents to regulate combustion in each combustor of the turbine systems.
    Type: Grant
    Filed: March 5, 2012
    Date of Patent: June 27, 2017
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Russell H. Oelfke, Richard A. Huntington, Sulabh K. Dhanuka, Dennis M. O'Dea, Robert D. Denton, O. Angus Sites, Franklin F. Mittricker
  • Patent number: 9599070
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Grant
    Filed: October 29, 2013
    Date of Patent: March 21, 2017
    Assignees: General Electric Company, ExxonMobil Upstream Research Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20170058737
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and separating the exhaust into rich CO2 and lean CO2 streams. In one or more embodiments, the exhaust is separated at an elevated pressure, such as between a high-pressure expansion stage and a low-pressure expansion stage.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 2, 2017
    Inventors: Franklin F. Mittricker, Sulabh K. Dhanuka, Richard A. Huntington, Omar Angus Sites, Dennis M. O'Dea, Russell H. Oelfke
  • Patent number: 9399950
    Abstract: The present techniques are directed to a combustor for a gas turbine. For example, an embodiment provides a spool piece for the combustor. The spool piece includes an oxidant injection port configured for injection of an oxidant proximate to a flame in the combustor and a recycle-gas extraction port configured for an extraction of a recycle gas from the combustor, wherein the recycle gas is isolated from the oxidant prior to the use of the oxidant in a flame.
    Type: Grant
    Filed: June 27, 2011
    Date of Patent: July 26, 2016
    Assignee: ExxonMobil Upstream Research Company
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Dennis M. O'Dea
  • Patent number: 9353940
    Abstract: Systems and methods for an oxy-fuel type combustion reaction are provided. In one or more embodiments, a combustion system can include at least two mixing zones, where a first mixing zone at least partially mixes oxygen and carbon dioxide to produce a first mixture and a second mixing zone at least partially mixes the first mixture with a fuel to produce a second mixture. The combustion system can also include a combustion zone configured to combust the second mixture to produce a combustion product. In one or more embodiments, the first mixture can have a spatially varied ratio of oxygen-to-carbon dioxide configured to generate a hot zone in the combustion zone to increase flame stability in the combustion zone.
    Type: Grant
    Filed: June 3, 2010
    Date of Patent: May 31, 2016
    Assignees: ExxonMobil Upstream Research Company, Georgia Tech Research Corporation
    Inventors: Franklin F. Mittricker, Dennis M. O'Dea, Harry W. Deckman, Chad C. Rasmussen, David R. Noble, Jerry M. Seitzman, Timothy C. Lieuwen, Sulabh K. Dhanuka, Richard Huntington
  • Publication number: 20160010493
    Abstract: A system includes plurality of combustors and a distributed flow measurement system coupled to the plurality of combustors. Each combustor of the plurality of combustors includes one or more oxidant passages and one or more fuel passages. The distributed flow measurement system is configured to measure an oxidant flow rate for a respective oxidant passage of the one or more oxidant passages of the respective combustor based at least in part on an oxidant pressure drop along the respective oxidant passage, and the distributed flow measurement system is configured to measure a fuel flow rate for a respective fuel passage of the one or more fuel passages of the respective combustor based at least in part on a fuel pressure drop along the respective fuel passage.
    Type: Application
    Filed: January 19, 2015
    Publication date: January 14, 2016
    Inventors: Dennis M. O'Dea, Karl Dean Minto, Richard A. Huntington, Sulabh K. Dhanuka, Franklin F. Mittricker
  • Publication number: 20140123620
    Abstract: A system includes a gas turbine system having a turbine combustor, a turbine driven by combustion products from the turbine combustor, and an exhaust gas compressor driven by the turbine. The exhaust gas compressor is configured to compress and supply an exhaust gas to the turbine combustor. The gas turbine system also has an exhaust gas recirculation (EGR) system. The EGR system is configured to recirculate the exhaust gas along an exhaust recirculation path from the turbine to the exhaust gas compressor. The system further includes a main oxidant compression system having one or more oxidant compressors. The one or more oxidant compressors are separate from the exhaust gas compressor, and the one or more oxidant compressors are configured to supply all compressed oxidant utilized by the turbine combustor in generating the combustion products.
    Type: Application
    Filed: October 29, 2013
    Publication date: May 8, 2014
    Applicants: ExxonMobil Upstream Research Company, General Electric Company
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Loren K. Starcher, Sulabh K. Dhanuka, Dennis M. O'Dea, Samuel D. Draper, Christian M. Hansen, Todd Denman, James A. West
  • Publication number: 20140083109
    Abstract: Systems, methods, and apparatus are provided for generating power in combined low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust from multiple turbine systems is combined, cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream. Portions of the recycled exhaust streams and the product streams may be used as diluents to regulate combustion in each combustor of the turbine systems.
    Type: Application
    Filed: March 5, 2012
    Publication date: March 27, 2014
    Inventors: Russell H. Oelfke, Richard A. Huntington, Sulabh K. Dhanuka, Dennis M. O'Dea, Robert D. Denton, Omar Angus Sites, Franklin F. Mittricker
  • Publication number: 20140013766
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and separating the exhaust into rich CO2 and lean CO2 streams. In one or more embodiments, the exhaust is separated at an elevated pressure, such as between a high-pressure expansion stage and a low-pressure expansion stage.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 16, 2014
    Inventors: Franklin F. Mittricker, Sulabh K. Dhanuka, Richard A. Huntington, Omar Angus Sites, Dennis M. O'Dea, Russell H. Oelfke
  • Publication number: 20140007590
    Abstract: Systems, methods, and apparatus are provided for generating power in low emission turbine systems and capturing and recovering carbon dioxide from the exhaust. In one or more embodiments, the exhaust is cooled, compressed, and separated to yield a carbon dioxide-containing effluent stream and a nitrogen-containing product stream.
    Type: Application
    Filed: March 5, 2012
    Publication date: January 9, 2014
    Inventors: Richard A. Huntington, Franklin F. Mittricker, Omer Angus Sites, Sulabh K. Dhanuka, Dennis M. O'Dea, Russell H. Oelfke, Robert D. Denton
  • Publication number: 20130125554
    Abstract: The present techniques are directed to a combustor for a gas turbine. For example, an embodiment provides a spool piece for the combustor. The spool piece includes an oxidant injection port configured for injection of an oxidant proximate to a flame in the combustor and a recycle-gas extraction port configured for an extraction of a recycle gas from the combustor, wherein the recycle gas is isolated from the oxidant prior to the use of the oxidant in a flame.
    Type: Application
    Filed: June 27, 2011
    Publication date: May 23, 2013
    Inventors: Franklin F. Mittricker, Richard A. Huntington, Dennis M. O'Dea
  • Publication number: 20120131925
    Abstract: Systems and methods for an oxy-fuel type combustion reaction are provided. In one or more embodiments, a combustion system can include at least two mixing zones, where a first mixing zone at least partially mixes oxygen and carbon dioxide to produce a first mixture and a second mixing zone at least partially mixes the first mixture with a fuel to produce a second mixture. The combustion system can also include a combustion zone configured to combust the second mixture to produce a combustion product. In one or more embodiments, the first mixture can have a spatially varied ratio of oxygen-to-carbon dioxide configured to generate a hot zone in the combustion zone to increase flame stability in the combustion zone.
    Type: Application
    Filed: June 3, 2010
    Publication date: May 31, 2012
    Applicant: EXXONMOBIL UPSTREAM RESEARCH COMPANY
    Inventors: Franklin F. Mittricker, Dennis M. O'Dea, Harry W. Deckman, Chad C. Rasmussen, David R. Noble, Jerry M. Seitzman, Timothy C. Lieuwen, Sulabh K. Dhanuka, Richard Huntington