Patents by Inventor Dennis R. Smalley

Dennis R. Smalley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 12255123
    Abstract: Embodiments of the present invention are directed to heat transfer arrays, cold plates including heat transfer arrays along with inlets and outlets, and thermal management systems including cold-plates, pumps and heat exchangers. These devices and systems may be used to provide cooling of semiconductor devices or other devices and particularly such devices that produce high heat concentrations. The heat transfer arrays may include microjets, multi-stage microjets, microchannels, fins, wells, wells with flow passages, well with stress relief or stress propagation inhibitors, and integrated microjets and fins.
    Type: Grant
    Filed: March 18, 2022
    Date of Patent: March 18, 2025
    Assignee: Microfabrica Inc.
    Inventors: Onnik Yaglioglu, Richard T. Chen, Will J. Tan, Jia Li, Uri Frodis, Nina C. Levy, Dennis R. Smalley
  • Patent number: 12196782
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 14, 2025
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Patent number: 12196781
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Grant
    Filed: October 18, 2022
    Date of Patent: January 14, 2025
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Patent number: 12066462
    Abstract: Probes for contacting electronic components include a plurality of compliant modules stacked in a serial configuration, which are supported by an exoskeleton or an endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Other probes are formed from single compliant modules or pairs of back-to-back modules that may share a common base. Module bases may include configurations that allow for one or both lateral alignment and longitudinal alignment of probes relative to array structures (e.g., array substrates, guide plates) or other modules they contact or to which they adhere.
    Type: Grant
    Filed: October 21, 2021
    Date of Patent: August 20, 2024
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Dennis R. Smalley
  • Patent number: 11999016
    Abstract: Embodiments are directed to the formation micro-scale or millimeter scale structures or methods of making such structures wherein the structures are formed from at least one sheet structural material and may include additional sheet structural materials or deposited structural materials wherein all or a portion of the patterning of the structural materials occurs via laser cutting. In some embodiments, selective deposition is used to provide a portion of the patterning. In some embodiments the structural material or structural materials are bounded from below by a sacrificial bridging material (e.g. a metal) and possibly from above by a sacrificial capping material (e.g. a metal).
    Type: Grant
    Filed: April 18, 2022
    Date of Patent: June 4, 2024
    Assignee: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Heath A. Jensen, Uri Frodis, Christopher G. Wiita, Michael S. Lockard, Irina Boguslavsky, Pavel Lembrikov, Dennis R. Smalley, Richard T. Chen
  • Publication number: 20240103042
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 17, 2022
    Publication date: March 28, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094258
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094256
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner spring elements along their lengths. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094255
    Abstract: Probes for contacting electronic components include a plurality of compliant modules stacked in a serial configuration, which are supported by an exoskeleton or an endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Other probes are formed from single compliant modules or pairs of back-to-back modules that may share a common base. Module bases may include configurations that allow for one or both lateral alignment and longitudinal alignment of probes relative to array structures (e.g., array substrates, guide plates) or other modules they contact or to which they adhere.
    Type: Application
    Filed: October 21, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Dennis R. Smalley
  • Publication number: 20240094252
    Abstract: Dual shield probes are provided having one or more of a plurality of different features including: discontinuous dielectric spacers, fixed nodes, sliding nodes, shield nodes, bridges, stops, interlocked dielectric and conductive elements, along with methods of using and making such probes.
    Type: Application
    Filed: October 4, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Jia Li, Arun S. Veeramani, Stefano Felici, Dennis R. Smalley
  • Publication number: 20240094257
    Abstract: Probes for contacting electronic components include compliant modules stacked in a serial configuration, which are supported by a sheath, exoskeleton, or endoskeleton which allows for linear longitudinal compression of probe ends toward one another wherein the compliant elements within the compliant modules include planar springs (when unbiased). Alternatively, probes may be formed from single modules or back-to-back modules that may share a common base/standoff. Modules may allow for lateral and/or longitudinal alignment relative to array structures or other modules. Planar springs may be spirals, interlaced spirals having common or offset longitudinal levels, with similar or different rotational orientations that are functionally joined, and planar springs may transition into multiple thinner planar spring elements along their length. Compression of probe tips toward one another may cause portions of spring elements to move closer together or further apart.
    Type: Application
    Filed: October 18, 2022
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley
  • Publication number: 20240094261
    Abstract: Probes for testing (e.g. wafer level testing or socket level testing) of electronic devices (e.g. semiconductor devices) and more particularly, arrays of such probes are provided. Probes are formed by initially fabricating probe preforms in batch with bases and/or ends located in array patterns, directly or indirectly on one or more build substrates with the arrayed preforms being in a longitudinally compressed state and whereafter the preforms are longitudinally plastically deformed to yield probes or partially formed probes with extended longitudinal lengths. Probes may be formed with deformable spring elements formed from one or more single layers which are joined by vertical elements located on other layers or they may be formed by spring elements that are formed as multi-layer structures. Arrays may include probe preforms with laterally overlapping or interlaced structures (but longitudinally displaced) which may remain laterally overlapping or become laterally displaced upon plastic deformation.
    Type: Application
    Filed: August 12, 2021
    Publication date: March 21, 2024
    Applicant: Microfabrica Inc.
    Inventors: Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20240085457
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays. In the various embodiments, probes include at least two springs separated by a movable stop while in other embodiments, three or more springs may be included with two or more movable stops. Movable stops interact with fixed stops that are either part of the probes themselves or part of separate elements that engage with the probes (such as array frame structures) that provide for the retention, longitudinal and/or lateral positioning of probes and possibly for orientation of the probes about a longitudinal axis. Fixed stops provide for controlled limits for movement of the movable stops which in turn allow for enhanced compliant or elastic performance of the probes upon increased probe compression in either one direction, in the order of tip compressions, or in both directions or tip compression orders (e.g.
    Type: Application
    Filed: November 22, 2023
    Publication date: March 14, 2024
    Inventors: Ming Ting Wu, Garret R. Smalley, Dennis R. Smalley
  • Publication number: 20240061017
    Abstract: Probe arrays include spacers attached to the probes that were formed along with the probes. Methods of making probe arrays by (1) forming probes on their sides and possibly as linear arrays or combination subarrays (e.g. as a number of side-to-side joined linear arrays) having probes fixed in array positions by a sacrificial material that is temporarily retained after formation of the probes; (2) assembling the probe units into full array configurations using the spacers attached to the probes or using alternative alignment structures to set the spacing and/or alignment of the probe(s) of one unit with another unit; and (3) fixing the probes in their configurations (e.g. bonding to a substrate and/or engaging the probes with one or more guide plates) wherein the spacers are retained or are removed, in whole or in part, prior to putting the array to use.
    Type: Application
    Filed: September 18, 2023
    Publication date: February 22, 2024
    Inventors: MIchael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Publication number: 20240019463
    Abstract: Forming buckling beam probe arrays having MEMS probes engaged with guide plates during formation or after formation of the probes while the probes are held in the array configuration in which they were formed is disclosed. Probes can be formed in, or laterally aligned with, guide plate through holes. Guide plate engagement can occur by longitudinally locating guide plates on probes that are partially formed or fully formed with exposed ends, by forming probes within guide plate through holes, by forming guide plates around probes, or forming guide plates in lateral alignment with arrayed probes and then longitudinally engaging the probes and the through holes of the guide plates. Arrays can include probes and a substrate to which the probes are bonded with one or more guide plates. Final arrays can include probes held by guide plates with aligned or laterally shifted hole patterns.
    Type: Application
    Filed: September 18, 2023
    Publication date: January 18, 2024
    Inventors: MIchael S. Lockard, Stefano Felici, Uri Frodis, Dennis R. Smalley
  • Publication number: 20240017990
    Abstract: Electronic test probes formed in a batch have a plurality of multi-material layers wherein at least one of the materials is a sacrificial material and at least one other material is a structural material.
    Type: Application
    Filed: April 14, 2023
    Publication date: January 18, 2024
    Inventors: Duy P. Le, Rulon J. Larsen, Jeffrey A. Thompson, Uri Frodis, Dale S. McPherson, Kleun Kim, Mahmood Samiee, Nina C. Levy, Dennis R. Smalley
  • Patent number: 11867721
    Abstract: Embodiments are directed to probe structures, arrays, methods of using probes and arrays, and/or methods for making probes and/or arrays. In the various embodiments, probes include at least two springs separated by a movable stop while in other embodiments, three or more springs may be included with two or more movable stops. Movable stops interact with fixed stops that are either part of the probes themselves or part of separate elements that engage with the probes (such as array frame structures) that provide for the retention, longitudinal and/or lateral positioning of probes and possibly for orientation of the probes about a longitudinal axis. Fixed stops provide for controlled limits for movement of the movable stops which in turn allow for enhanced compliant or elastic performance of the probes upon increased probe compression in either one direction, in the order of tip compressions, or in both directions or tip compression orders (e.g.
    Type: Grant
    Filed: December 31, 2020
    Date of Patent: January 9, 2024
    Assignee: Microfabrica Inc.
    Inventors: Ming Ting Wu, Garret R. Smalley, Dennis R. Smalley
  • Patent number: 11828775
    Abstract: Probe arrays include spacers attached to the probes that were formed along with the probes. Methods of making probe arrays by (1) forming probes on their sides and possibly as linear arrays or combination subarrays (e.g. as a number of side-to-side joined linear arrays) having probes fixed in array positions by a sacrificial material that is temporarily retained after formation of the probes; (2) assembling the probe units into full array configurations using the spacers attached to the probes or using alternative alignment structures to set the spacing and/or alignment of the probe(s) of one unit with another unit; and (3) fixing the probes in their configurations (e.g. bonding to a substrate and/or engaging the probes with one or more guide plates) wherein the spacers are retained or are removed, in whole or in part, prior to putting the array to use.
    Type: Grant
    Filed: May 13, 2021
    Date of Patent: November 28, 2023
    Assignee: MICROFABRICA INC.
    Inventors: Michael S. Lockard, Uri Frodis, Dennis R. Smalley
  • Patent number: 11821918
    Abstract: Embodiments are directed to the formation of buckling beam probe arrays having MEMS probes that are engaged with guide plates during formation or after formation of the probes while the probes are held in the array configuration in which they were formed. In other embodiments, probes may be formed in, or laterally aligned with, guide plate through holes. Guide plate engagement may occur by longitudinally locating guide plates on probes that are partially formed or fully formed with exposed ends, by forming probes within guide plate through holes, by forming guide plates around probes, or forming guide plates in lateral alignment with arrayed probes and then longitudinally engaging the probes and the through holes of the guide plates. Final arrays may include probes and a substrate to which the probes are bonded along with one or more guide plates while in other embodiments final arrays may include probes held by a plurality of guide plates (e.g.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: November 21, 2023
    Assignee: MICROFABRICA INC.
    Inventors: Michael S. Lockard, Stefano Felici, Uri Frodis, Dennis R. Smalley
  • Publication number: 20230358785
    Abstract: Probe array for contacting electronic components includes a plurality of probes for making contact between two electronic circuit elements and an array plate mounting and retention configuration. The probes may comprise lower retention features that protrudes from a probe body with a size and configuration that limits the longitudinal extent to which the probes can be inserted into plate probe holes of an array plate and an upper retention feature having a lateral configuration that is sized to pass through the extension provided by the side wall feature of the plate probe hole when aligned and after longitudinally locating the upper retention feature above the extension, the retention feature undergoes displacement relative to the upper plate probe hole such that the upper retention feature can no longer longitudinally pass through the extension of the upper plate probe hole.
    Type: Application
    Filed: April 4, 2023
    Publication date: November 9, 2023
    Inventors: Arun S. Veeramani, Ming Ting Wu, Dennis R. Smalley