Patents by Inventor Dennis Schroeder

Dennis Schroeder has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200323462
    Abstract: Methods and systems for obtaining and analyzing electromyography responses of electrodes of an implanted neurostimulation lead for use neurostimulation programming are provided herein. System setups for neural localization and/or programming include a clinician programmer coupleable with a temporary or permanent lead implantable in a patient and at least one pair of EMG sensing electrodes minimally invasively positioned on a skin surface or within the patient. The clinician programmer is configured to determine a plurality of recommended electrode configurations based on thresholds and EMG responses of the plurality of electrodes and rank the electrode configuration according to pre-determined criteria.
    Type: Application
    Filed: June 25, 2020
    Publication date: October 15, 2020
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Publication number: 20200254267
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assesssing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG patch adhered to a skin surface of a patient and connected to a lead extending through a percutaneous incision to a target tissue location. The EPG may be a modified version of the IPG used in the permanent system, the EPG may be smaller and/or lighter than the corresponding IPG device. The EPG and a lead extension may be sealed to allow improved patient mobility and reduced risk of infection. The EPG may be compatible with wireless systems used to control and monitor the IPG such that operation and control of the EPG is substantially the same in each system to allow seemless conversion to the permanently implanted system.
    Type: Application
    Filed: March 3, 2020
    Publication date: August 13, 2020
    Inventors: Prabodh Mathur, Rinda Sama, Dennis Schroeder, Eric Schmid, Stuart Karten
  • Patent number: 10729903
    Abstract: Methods and systems for obtaining and analyzing electromyography responses of electrodes of an implanted neurostimulation lead for use neurostimulation programming are provided herein. System setups for neural localization and/or programming include a clinician programmer coupleable with a temporary or permanent lead implantable in a patient and at least one pair of EMG sensing electrodes minimally invasively positioned on a skin surface or within the patient. The clinician programmer is configured to determine a plurality of recommended electrode configurations based on thresholds and EMG responses of the plurality of electrodes and rank the electrode configuration according to pre-determined criteria.
    Type: Grant
    Filed: December 9, 2016
    Date of Patent: August 4, 2020
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10682521
    Abstract: Devices, systems and methods for transcutaneous charging of implanted medical devices are provided herein. Such devices include a portable charging device and an attachment device for affixing the portable charging device to a skin of the patient in a suitable location and alignment over the implanted medical device to facilitate charging. The attachment device can include a frame having an opening through which the charging device is mounted and one or more tabs extending laterally from the opening, each tab including an adhesive surface and being movable from a first position extending away from a skin of the patient to facilitate positioning of the charging device and a second position extending toward the skin of the patient so as to engage the skin of the patient and affix the charging device to the patient after being properly positioned.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: June 16, 2020
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, Dennis Schroeder, Raymond W. Cohen
  • Patent number: 10589103
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assessing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG patch adhered to a skin surface of a patient and connected to a lead extending through a percutaneous incision to a target tissue location. The EPG may be a modified version of the IPG used in the permanent system, the EPG may be smaller and/or lighter than the corresponding IPG device. The EPG and a lead extension may be sealed to allow improved patient mobility and reduced risk of infection. The EPG may be compatible with wireless systems used to control and monitor the IPG such that operation and control of the EPG is substantially the same in each system to allow seamless conversion to the permanently implanted system.
    Type: Grant
    Filed: September 28, 2017
    Date of Patent: March 17, 2020
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Prabodh Mathur, Rinda Sama, Dennis Schroeder, Eric Schmid, Stuart Karten
  • Publication number: 20200078594
    Abstract: The present invention provides improved methods for positioning of an implantable lead in a patient with an integrated EMG and stimulation clinician programmer. The integrated clinician programmer is coupled to the implantable lead, wherein the implantable lead comprises at least four electrodes, and to at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. The method comprises delivering a test stimulation at a stimulation amplitude level from the integrated clinician programmer to a nerve tissue of the patient with a principal electrode of the implantable lead. Test stimulations are delivered at a same stimulation amplitude level for a same period of time sequentially to each of the four electrodes of the implantable lead.
    Type: Application
    Filed: August 21, 2019
    Publication date: March 12, 2020
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Publication number: 20200046985
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assessing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG affixation device that secures the EPG to the patient when connected to a lead extending through a percutaneous incision to a target tissue location, while allowing for ready removal of the EPG for charging or bathing. In another aspect, the system includes an EPG provided with a multi-purpose connector receptacle through which the the EPG can deliver neurostimulation therapy to an implanted lead or the EPG can be charged. In yet another aspect, the EPG can include a multi-purpose connector receptacle that is alternatingly connectable with a plurality of differing connector to facilitate differing types of therapies with one or more neurostimulation devices, ground patches or various other devices, such as charging or testing devices.
    Type: Application
    Filed: July 16, 2019
    Publication date: February 13, 2020
    Inventors: Prabodh Mathur, Dennis Schroeder, John Woock
  • Publication number: 20190321645
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Application
    Filed: June 28, 2019
    Publication date: October 24, 2019
    Inventors: Guangqiang JIANG, John WOOCK, Dennis SCHROEDER, Eric SCHMID
  • Patent number: 10406369
    Abstract: The present invention provides improved methods for positioning of an implantable lead in a patient with an integrated EMG and stimulation clinician programmer. The integrated clinician programmer is coupled to the implantable lead, wherein the implantable lead comprises at least four electrodes, and to at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. The method comprises delivering a test stimulation at a stimulation amplitude level from the integrated clinician programmer to a nerve tissue of the patient with a principal electrode of the implantable lead. Test stimulations are delivered at a same stimulation amplitude level for a same period of time sequentially to each of the four electrodes of the implantable lead.
    Type: Grant
    Filed: January 3, 2017
    Date of Patent: September 10, 2019
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10384067
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Grant
    Filed: May 2, 2018
    Date of Patent: August 20, 2019
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10376704
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assesssing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG affixation device that secures the EPG to the patient when connected to a lead extending through a percutaneous incission to a target tissue location, while allowing for ready removal of the EPG for charging or bathing. In another aspect, the system includes an EPG provided with a multi-purpose connector rectacle through which the EPG can deliver neurostimulation therapy to an implanted lead or the EPG can be charged. In yet another aspect, the EPG can include a multi-purpose connector receptacle that is alternatingly connectable with a plurality of differing connector to faciltiate differing types of therapies with one or more neurostimulation devices, ground patches or various other devices, such as charging or testing devices.
    Type: Grant
    Filed: February 13, 2017
    Date of Patent: August 13, 2019
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Prabodh Mathur, Dennis Schroeder, John Woock
  • Patent number: 10195423
    Abstract: A multichannel clip device and methods of use that facilitate connection of multiple electrical components of a first device and a second device for testing and/or verification are provided herein. Such multichannel clip devices can include a spring-loaded clip having multiple electrical contacts for coupling with a contact portion of a first device and which are connected to a proximal connector through a flexible stimulation cable. The contacts can be included within a neurostimulation lead connector and the proximal connector adapted to couple with standard connectors on a clinician programmer, each contact being coupled to a corresponding contact of the proximal connector to define multiple separate channels.
    Type: Grant
    Filed: January 19, 2016
    Date of Patent: February 5, 2019
    Assignee: Axonics Modulation Technologies, Inc.
    Inventors: Guanqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid, Andres Dandler
  • Publication number: 20190009098
    Abstract: An integrated electromyography (EMG) and signal/stimulation generation clinician programmer may be coupled with an implantable temporary or permanent lead in a patient and at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. Generally, the integrated clinician programmer may comprise a portable housing, a signal/stimulation generator, and EMG signal processor, and a graphical user interface. The housing has an external surface and encloses circuitry at least partially disposed within the housing. The signal/stimulation generator may be disposed within the housing and configured to deliver test stimulation to a nerve tissue of the patient via the implantable lead. The EMG signal processor may be disposed within the housing and configured to record a stimulation-induced EMG motor response for each test stimulation via the at least one EMG sensing electrode.
    Type: Application
    Filed: September 6, 2018
    Publication date: January 10, 2019
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10105542
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Grant
    Filed: January 3, 2018
    Date of Patent: October 23, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 10092762
    Abstract: An integrated electromyography (EMG) and signal/stimulation generation clinician programmer may be coupled with an implantable temporary or permanent lead in a patient and at least one EMG sensing electrode minimally invasively positioned on a skin surface or within the patient. Generally, the integrated clinician programmer may comprise a portable housing, a signal/stimulation generator, and EMG signal processor, and a graphical user interface. The signal/stimulation generator may be disposed within the housing and configured to deliver test stimulation to a nerve tissue of the patient via the implantable lead. The EMG signal processor may be disposed within the housing and configured to record a stimulation-induced EMG motor response for each test stimulation via the at least one EMG sensing electrode. The graphical user interface at least partially comprises the external surface of the housing and has a touch screen display for direct user interaction or a keyboard, mouse, or the like.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: October 9, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Publication number: 20180243572
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Application
    Filed: May 2, 2018
    Publication date: August 30, 2018
    Inventors: Guangqiang JIANG, John WOOCK, Dennis SCHROEDER, Eric SCHMID
  • Publication number: 20180133491
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Application
    Filed: January 3, 2018
    Publication date: May 17, 2018
    Inventors: Guangqiang JIANG, John WOOCK, Dennis SCHROEDER, Eric SCHMID
  • Publication number: 20180117344
    Abstract: Systems and methods for providing a trial neurostimulation to a patient for assessing suitability of a permanently implanted neurostimulation are provided herein. In one aspect, a trial neurostimulation system includes an EPG patch adhered to a skin surface of a patient and connected to a lead extending through a percutaneous incission to a target tissue location. The EPG may be a modified version of the IPG used in the permanent system, the EPG may be smaller and/or lighter than the corresponding IPG device. The EPG and a lead extension may be sealed to allow improved patient mobility and reduced risk of infection. The EPG may be compatible with wireless systems used to control and monitor the IPG such that operation and control of the EPG is substantially the same in each system to allow seemless conversion to the permantly implanted system.
    Type: Application
    Filed: September 28, 2017
    Publication date: May 3, 2018
    Inventors: Prabodh Mathur, Rinda Sama, Dennis Schroeder, Eric Schmid, Stuart Karten
  • Patent number: 9895546
    Abstract: A neurostimulation system having an external or an implantable pulse generator programmed to innervate a specific nerve or group of nerves in a patient through an electrode as a mode of treatment, having a patient remote that wirelessly communicates with the pulse generator to increase stimulation, decrease stimulation, and provide indications to a patient regarding the status of the neurostimulation system. The patient remote can allow for adjustment of stimulation power within a clinically effective range and for turning on and turning off the pulse generator. The patient remote and neurostimulation system can also store a stimulation level when the pulse generator is turned off and automatically restore the pulse generator to the stored stimulation level when the pulse generator is turned on.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: February 20, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid
  • Patent number: 9855423
    Abstract: Methods and systems for obtaining and analyzing electromyography responses of electrodes of an implanted neurostimulation lead for use neurostimulation programming are provided herein. System setups for neural localization and/or programming include a clinician programmer coupleable with a temporary or permanent lead implantable in a patient and at least one pair of EMG sensing electrodes minimally invasively positioned on a skin surface or within the patient. The clinician programmer is configured to determine a plurality of recommended electrode configurations based on thresholds and EMG responses of the plurality of electrodes and rank the electrode configuration according to pre-determined criteria.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: January 2, 2018
    Assignee: AXONICS MODULATION TECHNOLOGIES, INC.
    Inventors: Guangqiang Jiang, John Woock, Dennis Schroeder, Eric Schmid