Patents by Inventor Dennis Smalley

Dennis Smalley has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20050230261
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: January 3, 2005
    Publication date: October 20, 2005
    Inventors: Adam Cohen, Michael Lockard, Kieun Kim, Qui Le, Gang Zhang, Uri Frodis, Dale McPherson, Dennis Smalley
  • Publication number: 20050215023
    Abstract: Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 29, 2005
    Inventors: Adam Cohen, Ananda Kumar, Michael Lockard, Dennis Smalley
  • Publication number: 20050215046
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 29, 2005
    Inventors: Adam Cohen, Michael Lockard, Kieun Kim, Qui Le, Gang Zhang, Uri Frodis, Dale McPherson, Dennis Smalley
  • Publication number: 20050212539
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 29, 2005
    Inventors: Richard Chen, Ezekiel Kruglick, Christopher Bang, Dennis Smalley, Pavel Lembrikov
  • Publication number: 20050202660
    Abstract: Electrochemical fabrication processes and apparatus for producing multi-layer structures include operations or means for providing enhanced monitoring of build operations or detection of the results of build operations, operations or means for build problem recognition, operations or means for evaluation of corrective action options, operations or means for making corrective action decisions, and operations or means for executing actions based on those decisions.
    Type: Application
    Filed: November 22, 2004
    Publication date: September 15, 2005
    Inventors: Adam Cohen, Michael Lockard, Dennis Smalley, Marvin Kilgo
  • Publication number: 20050202180
    Abstract: Electrochemical fabrication methods for forming single and multilayer mesoscale and microscale structures are disclosed which include the use of diamond machining (e.g. fly cutting or turning) to planarize layers. Some embodiments focus on systems of sacrificial and structural materials which are useful in Electrochemical fabrication and which can be diamond machined with minimal tool wear (e.g. Ni—P and Cu, Au and Cu, Cu and Sn, Au and Cu, Au and Sn, and Au and Sn—Pb), where the first material or materials are the structural materials and the second is the sacrificial material). Some embodiments focus on methods for reducing tool wear when using diamond machining to planarize structures being electrochemically fabricated using difficult-to-machine materials (e.g. by depositing difficult to machine material selectively and potentially with little excess plating thickness, and/or pre-machining depositions to within a small increment of desired surface level (e.g.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 15, 2005
    Inventors: Adam Cohen, Uri Frodis, Michael Lockard, Ananda Kumar, Gang Zhang, Dennis Smalley
  • Publication number: 20050199583
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 15, 2005
    Inventors: Adam Cohen, Michael Lockard, Kieun Kim, Qui Le, Gang Zhang, Uri Frodis, Dale McPherson, Dennis Smalley
  • Publication number: 20050194258
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 8, 2005
    Inventors: Adam Cohen, Michael Lockard, Kieun Kim, Qui Le, Gang Zhang, Uri Frodis, Dale McPherson, Dennis Smalley
  • Publication number: 20050189958
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 1, 2005
    Inventors: Richard Chen, Ezekiel Kruglick, Christopher Bang, Dennis Smalley, Pavel Lembrikov
  • Publication number: 20050189959
    Abstract: Some embodiments of the invention are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that partially coats the surface of the probe. Other embodiments are directed to the electrochemical fabrication of microprobes which are formed from a core material and a material that completely coats the surface of each layer from which the probe is formed including interlayer regions. These first two groups of embodiments incorporate both the core material and the coating material during the formation of each layer. Still other embodiments are directed to the electrochemical fabrication of microprobe arrays that are partially encapsulated by a dielectric material during a post layer formation coating process. In even further embodiments, the electrochemical fabrication of microprobes from two or more materials may occur by incorporating a coating material around each layer of the structure without locating the coating material in inter-layer regions.
    Type: Application
    Filed: January 3, 2005
    Publication date: September 1, 2005
    Inventors: Adam Cohen, Ananda Kumar, Michael Lockard, Dennis Smalley
  • Publication number: 20050179458
    Abstract: Embodiments disclosed herein are directed to compliant probe structures for making temporary or permanent contact with electronic circuits and the like. In particular, embodiments are directed to various designs of cantilever-like probe structures. Some embodiments are directed to methods for fabricating such cantilever structures. In some embodiments, for example, cantilever probes have extended base structures, slide in mounting structures, multi-beam configurations, offset bonding locations to allow closer positioning of adjacent probes, compliant elements with tensional configurations, improved over travel, improved compliance, improved scrubbing capability, and/or the like.
    Type: Application
    Filed: January 3, 2005
    Publication date: August 18, 2005
    Inventors: Richard Chen, Ezekiel Kruglick, Christopher Bang, Dennis Smalley, Pavel Lembrikov
  • Publication number: 20050176238
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: January 3, 2005
    Publication date: August 11, 2005
    Inventors: Adam Cohen, Michael Lockard, Kieun Kim, Qui Le, Gang Zhang, Uri Frodis, Dale McPherson, Dennis Smalley
  • Publication number: 20050173374
    Abstract: Some embodiments of the present invention are directed to techniques for building up single layer or multi-layer structures on dielectric or partially dielectric substrates. Certain embodiments deposit seed layer material directly onto substrate materials while other embodiments use an intervening adhesion layer material. Some embodiments use different seed layer materials and/or adhesion layer materials for sacrificial and structural conductive building materials. Some embodiments apply seed layer and/or adhesion layer materials in what are effectively selective manners while other embodiments apply the materials in blanket fashion. Some embodiments remove extraneous depositions (e.g. depositions to regions unintended to form part of a layer) via planarization operations while other embodiments remove the extraneous material via etching operations.
    Type: Application
    Filed: January 3, 2005
    Publication date: August 11, 2005
    Inventors: Adam Cohen, Michael Lockard, Kieun Kim, Qui Le, Gang Zhang, Uri Frodis, Dale McPherson, Dennis Smalley
  • Publication number: 20050126916
    Abstract: Embodiments of multi-layer three-dimensional structures and formation methods provide structures with effective feature (e.g. opening) sizes (e.g. virtual gaps) that are smaller than a minimum feature size (MFS) that exists on each layer as a result of the formation method used in forming the structures. In some embodiments, multi-layer structures include a first element (e.g. first patterned layer with a gap) and a second element (e.g. second patterned layer with a gap) positioned adjacent the first element to define a third element (e.g. a net gap or opening resulting from the combined gaps of the first and second elements) where the first and second elements have features that are sized at least as large as the minimum feature size and the third element, at least in part, has dimensions or defines dimensions smaller than the minimum feature size.
    Type: Application
    Filed: September 24, 2004
    Publication date: June 16, 2005
    Inventors: Michael Lockard, Adam Cohen, Vacit Arat, Dennis Smalley
  • Publication number: 20050104609
    Abstract: Multilayer test probe structures are electrochemically fabricated via depositions of one or more materials in a plurality of overlaying and adhered layers. In some embodiments each probe structure may include a plurality of contact arms or contact tips that are used for contacting a specific pad or plurality of pads wherein the arms and/or tips are configured in such away so as to provide a scrubbing motion (e.g. a motion perpendicular to a primary relative movement motion between a probe carrier and the IC) as the probe element or array is made to contact an IC, or the like, and particularly when the motion between the probe or probes and the IC occurs primarily in a direction that is perpendicular to a plane of a surface of the IC. In some embodiments arrays of multiple probes are provided and even formed in desired relative position simultaneously.
    Type: Application
    Filed: February 4, 2004
    Publication date: May 19, 2005
    Inventors: Vacit Arat, Adam Cohen, Dennis Smalley, Ezekiel J. Kruglick, Richard Chen, Kieun Kim
  • Publication number: 20050067292
    Abstract: Multilayer structures are electrochemically fabricated on a temporary (e.g. conductive) substrate and are thereafter bonded to a permanent (e.g. dielectric, patterned, multi-material, or otherwise functional) substrate and removed from the temporary substrate. In some embodiments, the structures are formed from top layer to bottom layer, such that the bottom layer of the structure becomes adhered to the permanent substrate, while in other embodiments the structures are formed from bottom layer to top layer and then a double substrate swap occurs. The permanent substrate may be a solid that is bonded (e.g. by an adhesive) to the layered structure or it may start out as a flowable material that is solidified adjacent to or partially surrounding a portion of the structure with bonding occurring during solidification. The multilayer structure may be released from a sacrificial material prior to attaching the permanent substrate or it may be released after attachment.
    Type: Application
    Filed: May 7, 2004
    Publication date: March 31, 2005
    Inventors: Jeffrey Thompson, Adam Cohen, Michael Lockard, Dennis Smalley
  • Publication number: 20050045484
    Abstract: Three-dimensional structures are electrochemically fabricated by depositing a first material onto previously deposited material through voids in a patterned mask where the patterned mask is at least temporarily adhered to previously deposited material and is formed and patterned directly from material selectively dispensed from a computer controlled dispensing device (e.g. an ink jet nozzle or array or an extrusion device). In some embodiments layers are formed one on top of another to build up multi-layer structures. In some embodiments the mask material acts as a build material while in other embodiments the mask material is replaced each layer by a different material which may, for example, be conductive or dielectric.
    Type: Application
    Filed: May 7, 2004
    Publication date: March 3, 2005
    Inventors: Dennis Smalley, Michael Lockard
  • Publication number: 20050032375
    Abstract: Embodiments of the present invention provide mesoscale or microscale three-dimensional structures (e.g. components, device, and the like). Embodiments relate to one or more of (1) the formation of such structures which incorporate sheets of dielectric material and/or wherein seed layer material used to allow electrodeposition over dielectric material is removed via planarization operations; (2) the formation of such structures wherein masks used for at least some selective patterning operations are obtained through transfer plating of masking material to a surface of a substrate or previously formed layer, and/or (3) the formation of such structures wherein masks used for forming at least portions of some layers are patterned on the build surface directly from data representing the mask configuration, e.g. in some embodiments mask patterning is achieved by selectively dispensing material via a computer controlled inkjet nozzle or array or via a computer controlled extrusion device.
    Type: Application
    Filed: May 7, 2004
    Publication date: February 10, 2005
    Inventors: Michael Lockard, Dennis Smalley, Willa Larsen, Richard Chen
  • Publication number: 20050032362
    Abstract: A method of fabricating three-dimensional structures from a plurality of adhered layers of at least a first and a second material wherein the first material is a conductive material and wherein each of a plurality of layers includes treating a surface of a first material prior to deposition of the second material. The treatment of the surface of the first material either (1) decreases the susceptibility of deposition of the second material onto the surface of the first material or (2) eases or quickens the removal of any second material deposited on the treated surface of the first material. In some embodiments the treatment of the first surface includes forming a dielectric coating over the surface and the second material is electrodeposited (e.g. using an electroplating or electrophoretic process). In other embodiments the first material is coated with a conductive material that doesn't readily accept deposits of electroplated or electroless deposited materials.
    Type: Application
    Filed: May 7, 2004
    Publication date: February 10, 2005
    Inventors: Adam Cohen, Dennis Smalley, Michael Lockard, Qui Le
  • Publication number: 20050023146
    Abstract: Multi-layer structures are electrochemically formed on porous dielectric substrates. In some embodiments, the substrates have at least one surface which is infiltrated with a sacrificial conductive material, all pores (e.g. openings in between dielectric regions of the substrate) or selected pores near the surface of the substrate are opened, and a structural material is deposited to fill at least a portion of the opened pores. If more pores are opened than have been filled or will be filled by the structural material a sacrificial material may be deposited to fill the additional pores. After completing formation of an initial patterned surface on the substrate, a plurality of layers are formed on the substrate (e.g. via electrodeposition operations) and after layer formation is complete, the conductive sacrificial material filling the pores is removed.
    Type: Application
    Filed: May 7, 2004
    Publication date: February 3, 2005
    Applicant: Microfabrica Inc.
    Inventors: Pavel Lembrikov, Dennis Smalley, Adam Cohen