Patents by Inventor Dennis Stamires

Dennis Stamires has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20120144730
    Abstract: A process is disclosed for converting a particulate solid biomass material to a high quality bio-oil in high yield. The process comprises a pretreatment step and a pyrolysis step. The pretreatment comprises a step of at least partially demineralizing the solid biomass, and improving the accessibility of the solid biomass by opening the texture of the particles of the solid biomass. In a preferred embodiment the liquid pyrolysis product is separated into the bio-oil and an aqueous phase, and the aqueous phase is used as a solvent in the demineralization step and/or in the step of improving the accessibility of the solid biomass by opening the texture of the particles of the solid biomass.
    Type: Application
    Filed: March 24, 2010
    Publication date: June 14, 2012
    Applicant: KIOR INC.
    Inventors: Dennis Stamires, Michael Brady, Paul O'Connor, Jacobus Cornelis Rasser
  • Publication number: 20120137571
    Abstract: A process is disclosed for converting a biomass material to a stabilized bio-oil. The process comprises converting the biomass to a pyrolytic oil having suspended therein particles of metal compounds, and removing at least part of the suspended metal compounds to obtain a stabilized bio-oil.
    Type: Application
    Filed: December 22, 2009
    Publication date: June 7, 2012
    Applicant: KIOR INC.
    Inventors: Michael Brady, Dennis Stamires, Paul O'connor
  • Publication number: 20120142520
    Abstract: A catalyst system is disclosed for catalytic pyrolysis of a solid biomass material. The system comprises an oxide, silicate or carbonate of a metal or a metalloid. The specific combined meso and macro surface area of the system is in the range of from 1 m2/g to 100 m2/g. When used in a catalytic process the system provides a high oil yield and a low coke yield. The liquid has a relatively low oxygen content.
    Type: Application
    Filed: April 22, 2010
    Publication date: June 7, 2012
    Applicant: KIOR INC.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Publication number: 20120117860
    Abstract: A two-stage reactor is disclosed for the conversion of solid particulate biomass material. The reactor is designed to maximize conversion of the solid biomass material, while limiting excess cracking of primary reaction products. The two-stage reactor comprises a first stage reactor, in which solid biomass material is thermally pyrolyzed to primary reaction products. The primary reaction products are catalytically converted in a second stage reactor.
    Type: Application
    Filed: November 16, 2010
    Publication date: May 17, 2012
    Applicant: KiOR, Inc.
    Inventors: Michael Brady, Ronald Lee Cordle, Peter Loezos, Dennis Stamires
  • Patent number: 8168840
    Abstract: A process is described for pretreating lignocellulosic biomass. The process comprises swelling the lignocellulosic biomass with an aqueous liquid. The pretreated lignocellulosic biomass may be used as a feedstock for the enzymatic conversion to ethanol, or in a thermal conversion. process to produce bio-oil. The pretreatment results in a greater yield and, in the case of a thermal conversion process, a better quality of the bio-oil. The pretreatment process may be used to adjust the composition and amount of inorganic material present in the lignocellulosic biomass material.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: May 1, 2012
    Assignee: KiOR Inc.
    Inventors: Michael Brady, Paul O'Connor, Dennis Stamires
  • Publication number: 20120060408
    Abstract: A process is disclosed for preparing fluidizable particles of a biomass/catalyst composite material. The process comprises the steps of (i) providing a particulate, solid biomass material; (ii) forming a composite of the biomass material and a catalytic material; (iii) subjecting the biomass material to a thermal treatment at a torrefaction temperature at or above 200° C., and low enough to avoid significant conversion of the biomass material to liquid conversion products; and (iv) forming fluidizable particles from the biomass material. Step (ii) may be carried out before or after step (iii).
    Type: Application
    Filed: December 10, 2009
    Publication date: March 15, 2012
    Applicant: KIOR INC.
    Inventors: Robert Bartek, Dennis Stamires, Michael Brady
  • Publication number: 20120047794
    Abstract: Aspects of the present invention relate to methods, systems, and compositions for preparing a solid biomass for fast pyrolysis. The method includes contacting the solid biomass with an inorganic material present in an effective amount for increasing fast pyrolysis yield of an organic liquid product (e.g., bio-oil). In various embodiments, the inorganic material is selected from the group consisting of aluminum sulfate, aluminum nitrate, aluminum chloride, aluminum hydroxide, ammonium hydroxide, magnesium hydroxide, potassium hydroxide, and combinations thereof.
    Type: Application
    Filed: March 10, 2011
    Publication date: March 1, 2012
    Applicant: KIOR, INC.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 8088354
    Abstract: Process for the preparation of quasi-crystalline boehmite comprising the steps of: (a) preparing an aqueous precursor mixture comprising a water-insoluble aluminum source; (b) decreasing the pH of the precursor mixture of step (a) by at least 2 units; (c) increasing the pH of the mixture of step (b) by at least 2 units, and (d) aging the mixture of step (c) under hydrothermal conditions to form a quasi-crystalline boehmite. This process provides for the hydrothermal preparation of quasi-crystalline boehmites with high peptizability. The invention therefore further relates to quasi-crystalline boehmites with a high peptizability, measured as the Z-average submicron particle size. This Z-average submicron particle size preferably is less than 500 nm, more preferably less than 300 nm, even more preferably less than 200 nm, and most preferably less than 100 nm.
    Type: Grant
    Filed: November 19, 2004
    Date of Patent: January 3, 2012
    Assignee: Albemarle Netherlands B.V.
    Inventors: Erik Jeroen Laheij, Paul O'Connor, Dennis Stamires, Edisson Morgado, Jr., Marco Antonio Santos de Abreu, Márcio Fernandes, Michael Brady
  • Patent number: 8063258
    Abstract: A process for producing fuel from biomass is disclosed herein. The process includes torrefying biomass material at a temperature between 80° C. and 300° C. to form particulated biomass having a mean average particle size from about 1 ?m to about 1000 ?m. The particulated biomass is mixed with a liquid to form a suspension, wherein the liquid comprises bio-oil, wherein the suspension includes between 1 weight percent to 40 weight percent particulated biomass. The suspension is fed into a hydropyrolysis reactor; and at least a portion of the particulated biomass of the suspension is converted into fuel.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: November 22, 2011
    Assignee: Kior Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Publication number: 20110258913
    Abstract: A composition of matter is disclosed comprising an intimate mixture of a particulate solid biomass material and a carbonaceous material. The composition is suitable for conversion to a bio-oil in a pyrolysis reaction. The carbonaceous material acts as a reducing agent during the pyrolysis reaction. The composition of matter produces bio-oil in a greater yield than prior art processes. The bio-oil is of improved quality, as evidenced by its low TAN value.
    Type: Application
    Filed: December 16, 2009
    Publication date: October 27, 2011
    Applicant: KIOR INC.
    Inventors: Dennis Stamires, Paul O'connor
  • Publication number: 20110256615
    Abstract: A process is disclosed for preparing biomass particles for thermolytic or enzymatic conversion whereby the biomass particles baying a moisture content of at least 20% are subjected to flash heating. The flash heating may be preceded by one or more adsorption/desorption cycles with water or steam. A swelling aid may be added during the adsorption part of an adsorption/desorption cycle.
    Type: Application
    Filed: December 22, 2009
    Publication date: October 20, 2011
    Applicant: KIOR, INC.
    Inventors: Michael Brady, Dennis Stamires, Paul O'Connor
  • Patent number: 8022260
    Abstract: The present invention relates to the conversion of solid biomass to liquid fuels and specialty chemicals. The process utilizes an activating step to make the biomass more susceptible to conversion, that is the biomass is broken down such that the components of the biomass are dissociated. Subsequently, the activated biomass undergoes a reaction to convert it to a bio-oil.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: September 20, 2011
    Assignee: Kior Inc.
    Inventors: Paul O'Connor, Dennis Stamires, Sjoerd Daamen
  • Patent number: 8003835
    Abstract: A method for converting solid biomass into hydrocarbons includes contacting the solid biomass with a catalyst in a first riser operated at a temperature in the range of from about 50° C. to about 200° C. to thereby produce a first biomass-catalyst mixture and a first product comprising hydrocarbons; a) separating the first product from the first biomass-catalyst mixture; c) charging the first biomass-catalyst mixture to a second riser operated at a temperature in the range of from about 200° C. to about 400° C. to thereby produce a second biomass-catalyst mixture and a second product comprising hydrocarbons; d) separating the second product from the second biomass-catalyst mixture; e) charging the second biomass-catalyst mixture to a third riser operated at a temperature greater than about 450° C. to thereby produce a spent catalyst and a third product comprising hydrocarbons; and f) separating the third effluent from the spent catalyst.
    Type: Grant
    Filed: October 27, 2009
    Date of Patent: August 23, 2011
    Assignee: Kior Inc.
    Inventors: Steve Yanik, Robert Bartek, Paul O'Connor, Dennis Stamires, Michael Brady
  • Publication number: 20110197511
    Abstract: A process is disclosed process for converting a solid or highly viscous carbon-based energy carrier material to liquid and gaseous reaction products, said process comprising the steps of: a) contacting the carbon-based energy carrier material with a particulate catalyst material b) converting the carbon-based energy carrier material at a reaction temperature between 200° C. and 450° C., preferably between 250° C. and 350° C., thereby forming reaction products in the vapor phase. In a preferred embodiment the process comprises the additional step of: c) separating the vapor phase reaction products from the particulate catalyst material within 10 seconds after said reaction products are formed. In a further preferred embodiment step c) is followed by: d) quenching the reaction products to a temperature below 200° C.
    Type: Application
    Filed: January 18, 2011
    Publication date: August 18, 2011
    Applicant: KIOR INC.
    Inventors: Paul O'Connor, Dennis Stamires, Jacob Adriaan Moulijn
  • Publication number: 20110154720
    Abstract: A process for producing fuel from biomass is disclosed herein. The process includes torrefying biomass material at a temperature between 80° C. to 400° C. to form particulated biomass having a mean average particle size between 1 ?m and 1000 ?m. The particulated biomass is mixed with a liquid hydrocarbon to form a suspension, wherein the suspension includes from 1 weight percent to 40 weight percent particulated biomass. The suspension is fed into a unit selected from the group consisting of a pyrolysis reactor, a fluid catalytic cracking unit, a delayed coker, a fluid coker, a hydroprocessing unit, and a hydrocracking unit, and then at least a portion of the particulated biomass of the suspension is converted into fuel.
    Type: Application
    Filed: November 2, 2010
    Publication date: June 30, 2011
    Applicant: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires, Steve Yanik, Paul O'Connor, Jacobus C. Rasser
  • Publication number: 20110114876
    Abstract: A process is disclosed for pretreating lignocellulosic biomass. The process comprises swelling the lignocellulosic biomass with an aqueous liquid. The pretreated lignocellulosic biomass may be used as a feedstock for the enzymatic conversion to ethanol, or in a thermal conversion process to produce bio-oil. The pretreatment results in a greater yield and, in the case of a thermal conversion process, a better quality of the bio-oil. The pretreatment process may be used to adjust the composition and amount of inorganic material present in the lignocellulosic biomass material.
    Type: Application
    Filed: June 25, 2009
    Publication date: May 19, 2011
    Applicant: KIOR, INC.
    Inventors: Michael Brady, Paul O'Connor, Dennis Stamires
  • Publication number: 20110114765
    Abstract: A method is disclosed for reducing the mechanical strength of solid biomass material, in particular ligno-cellulosic biomass. The method comprises heating the solid biomass material to a temperature in the range of 105° C. to 200° C. The heat treatment, which is referred to as “toasting”, significantly reduces the mechanical energy required for reducing the particle size of the solid biomass material. The method is particularly suitable as a pretreatment step to a conversion reaction of the solid biomass material.
    Type: Application
    Filed: November 30, 2009
    Publication date: May 19, 2011
    Applicant: KiOR, INC.
    Inventors: Michael Brady, Robert Bartek, Dennis Stamires, Paul O'Connor
  • Publication number: 20110099888
    Abstract: A process for producing fuel from biomass is disclosed herein. The process includes torrefying biomass material at a temperature between 80° C. and 300° C. to form particulated biomass having a mean average particle size from about 1 ?m to about 1000 ?m. The particulated biomass is mixed with a liquid to form a suspension, wherein the liquid comprises bio-oil, wherein the suspension includes between 1 weight percent to 40 weight percent particulated biomass. The suspension is fed into a hydropyrolysis reactor; and at least a portion of the particulated biomass of the suspension is converted into fuel.
    Type: Application
    Filed: November 2, 2010
    Publication date: May 5, 2011
    Applicant: KiOR, Inc.
    Inventors: Robert Bartek, Michael Brady, Dennis Stamires
  • Patent number: 7901568
    Abstract: A process is disclosed process for converting a solid or highly viscous carbon-based energy carrier material to liquid and gaseous reaction products, said process comprising the steps of: a) contacting the carbon-based energy carrier material with a particulate catalyst material b) converting the carbon-based energy carrier material at a reaction temperature between 200° C. and 450° C., preferably between 250° C. and 350° C., thereby forming reaction products in the vapor phase. In a preferred embodiment the process comprises the additional step of: c) separating the vapor phase reaction products from the particulate catalyst material within 10 seconds after said reaction products are formed; In a further preferred embodiment step c) is followed by: d) quenching the reaction products to a temperature below 200° C.
    Type: Grant
    Filed: May 4, 2007
    Date of Patent: March 8, 2011
    Assignee: Kior Inc.
    Inventors: Paul O'Connor, Dennis Stamires, Jacob Adriaan Moulijn
  • Patent number: 7824540
    Abstract: Process for upgrading a liquid hydrocarbon feed comprising the steps of (a) preparing a slurry comprising the hydrocarbon feed having a boiling range above 350° C. and solid particles comprising a rehydratable material, (b) thermally treating said slurry at a temperature in the range of 250 to 550° C., (c) optionally separating the thermally treated slurry into (I) a lower boiling fraction and (ii) a higher boiling fraction containing the solid particles and formed coke, if any, and (d) separating the solid particles and formed coke, if any, from the thermally treated slurry resulting from step b) or the higher boiling fraction of step c).
    Type: Grant
    Filed: June 16, 2005
    Date of Patent: November 2, 2010
    Assignee: Albemarle Corporation
    Inventors: Paul O'Connor, Erik Jeroen Laheij, Dennis Stamires, Michael F. Brady, Francisco René Mas Cabre, Oscar René Chamberlain Pravia, Henrique Soares Cerqueira, Fabió Lopes De Azevedo