Patents by Inventor Denys NIKOLAYEV

Denys NIKOLAYEV has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11871896
    Abstract: The biotelemetry device (100) comprises a microcontroller (101) for generating an electrical setpoint signal (CS); a radio antenna (103) for transmitting an electromagnetic wave (EMS) by converting an incident electrical signal (IS); a radiofrequency circuit (102), interconnected between the microcontroller (101) and the radio antenna (103). The radio antenna (103) is configured such that, when the biotelemetry device (100) is placed in the biological medium (110), it can be impedance-mismatched relative to the radiofrequency circuit (102) so as to generate a reflected electrical signal (RS) by reflecting a fraction of the incident electrical signal at the same time that the radio antenna is transmitting the electromagnetic wave (EMS).
    Type: Grant
    Filed: October 2, 2018
    Date of Patent: January 16, 2024
    Assignees: BODYCAP, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE RENNES
    Inventors: Denys Nikolayev, Maxim Zhadobov, Ronan Sauleau
  • Publication number: 20230201573
    Abstract: A method includes providing a first electrically conductive element over a top surface of a substrate. The method includes measuring at least one parameter indicative of the shape or dimensions of the first electrically conductive element. The method includes simulating the first electrically conductive element and a dielectric wall surrounding the first electrically conductive element for a plurality of wall heights by using the at least one parameter as an input. The method includes for each wall height, computing the maximum current density present at a surface of the first electrically conductive element. The method includes determining, from the maximum current densities, wall height(s) for which the maximum current density is below a threshold. Furthermore, the method includes providing a second electrically conductive element, identical to the first electrically conductive element, surrounded by a wall having a wall height of the determined wall height(s).
    Type: Application
    Filed: December 19, 2022
    Publication date: June 29, 2023
    Inventors: Denys Nikolayev, Wout Joseph, Luc Martens, Alexandru Andrei, Carolina Mora Lopez, Emmeric Tanghe
  • Patent number: 11616290
    Abstract: Disclosed is a radio antenna comprising a substrate of dielectric material; a ground plane of electrically conductive material on a first face of the substrate; a resonator for converting an incident electrical signal into an electromagnetic wave and for resonating at at least two different resonant frequencies. The resonator comprises at least three elements, each in the form of strips of conductive material and arranged on a second face of the substrate opposite the first face. A second element is electrically connected to the ground plane by means of a via passing through the substrate at a first end of the corresponding strip, forms an extension of the first element, and is electrically connected directly to the first element at a second end of said strip which is opposite the first end.
    Type: Grant
    Filed: January 7, 2022
    Date of Patent: March 28, 2023
    Assignees: BODYCAP, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE RENNES 1
    Inventors: Denys Nikolayev, Maxim Zhadobov, Ronan Sauleau
  • Publication number: 20220209394
    Abstract: Disclosed is a radio antenna comprising a substrate of dielectric material; a ground plane of electrically conductive material on a first face of the substrate; a resonator for converting an incident electrical signal into an electromagnetic wave and for resonating at at least two different resonant frequencies. The resonator comprises at least three elements, each in the form of strips of conductive material and arranged on a second face of the substrate opposite the first face. A second element is electrically connected to the ground plane by means of a via passing through the substrate at a first end of the corresponding strip, forms an extension of the first element, and is electrically connected directly to the first element at a second end of said strip which is opposite the first end.
    Type: Application
    Filed: January 7, 2022
    Publication date: June 30, 2022
    Inventors: Denys NIKOLAYEV, Maxim ZHADOBOV, Ronan SAULEAU
  • Patent number: 11258166
    Abstract: Disclosed is a radio antenna comprising a substrate of dielectric material; a ground plane of electrically conductive material on a first face of the substrate; a resonator for converting an incident electrical signal into an electromagnetic wave and for resonating at at least two different resonant frequencies. The resonator comprises at least three elements, each in the form of strips of conductive material and arranged on a second face of the substrate opposite the first face. A second element is electrically connected to the ground plane by means of a via passing through the substrate at a first end of the corresponding strip, forms an extension of the first element, and is electrically connected directly to the first element at a second end of said strip which is opposite the first end.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: February 22, 2022
    Assignees: BODYCAP, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE RENNES 1
    Inventors: Denys Nikolayev, Maxim Zhadobov, Ronan Sauleau
  • Publication number: 20210030305
    Abstract: The biotelemetry device (100) comprises a microcontroller (101) for generating an electrical setpoint signal (CS); a radio antenna (103) for transmitting an electromagnetic wave (EMS) by converting an incident electrical signal (IS); a radiofrequency circuit (102), interconnected between the microcontroller (101) and the radio antenna (103). The radio antenna (103) is configured such that, when the biotelemetry device (100) is placed in the biological medium (110), it can be impedance-mismatched relative to the radiofrequency circuit (102) so as to generate a reflected electrical signal (RS) by reflecting a fraction of the incident electrical signal at the same time that the radio antenna is transmitting the electromagnetic wave (EMS).
    Type: Application
    Filed: October 2, 2018
    Publication date: February 4, 2021
    Inventors: Denys NIKOLAYEV, Maxim ZHADOBOV, Ronan SAULEAU
  • Patent number: 10910701
    Abstract: The radio antenna comprises a substrate formed of a dielectric material; a ground plane made of an electrically conductive material, the ground plane being arranged on a first face (F2) of the substrate; a resonator configured to convert an incident electrical signal into an electromagnetic wave. The resonator includes a first element (E1) having a first characteristic impedance and a second element (E2) having a second characteristic impedance that is higher than the first characteristic impedance. The first element (E1) is configured to receive the incident electrical signal, the first element (E1) is formed by a strip of electrically conductive material, the strip being arranged on a second face (F1) of the substrate opposite the first face (F2). The second element (E2) is formed by a rectilinear segment, cut in the ground plane and separated from the rest of the ground plane by a slot (202) of fixed width.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: February 2, 2021
    Assignees: BODYCAP, CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE, UNIVERSITE DE RENNES 1
    Inventors: Denys Nikolayev, Maxim Zhadobov, Ronan Sauleau
  • Publication number: 20200266528
    Abstract: The radio antenna comprises a substrate formed of a dielectric material; a ground plane made of an electrically conductive material, the ground plane being arranged on a first face (F2) of the substrate; a resonator configured to convert an incident electrical signal into an electromagnetic wave. The resonator includes a first element (El) having a first characteristic impedance and a second element (E2) having a second characteristic impedance that is higher than the first characteristic impedance. The first element (El) is configured to receive the incident electrical signal, the first element (El) is formed by a strip of electrically conductive material, the strip being arranged on a second face (Fl) of the substrate opposite the first face (F2). The second element (E2) is formed by a rectilinear segment, cut in the ground plane and separated from the rest of the ground plane by a slot (202) of fixed width.
    Type: Application
    Filed: October 4, 2018
    Publication date: August 20, 2020
    Inventors: Denys NIKOLAYEV, Maxim ZHADOBOV, Ronan SAULEAU
  • Publication number: 20200243953
    Abstract: Disclosed is a radio antenna comprising a substrate of dielectric material; a ground plane of electrically conductive material on a first face of the substrate; a resonator for converting an incident electrical signal into an electromagnetic wave and for resonating at at least two different resonant frequencies. The resonator comprises at least three elements, each in the form of strips of conductive material and arranged on a second face of the substrate opposite the first face. A second element is electrically connected to the ground plane by means of a via passing through the substrate at a first end of the corresponding strip, forms an extension of the first element, and is electrically connected directly to the first element at a second end of said strip which is opposite the first end.
    Type: Application
    Filed: October 4, 2018
    Publication date: July 30, 2020
    Inventors: Denys NIKOLAYEV, Maxim ZHADOBOV, Ronan SAULEAU