Patents by Inventor Depu Chen

Depu Chen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9512001
    Abstract: This invention provides nanometer-sized fluorescent magnetic particles and processes of making them. The nanoparticle has a core particle comprising a magnetic material and a fluorescent material, and the particle size is less than about 1 micrometer. The nanoparticles can be coated with an inorganic or organic layer and can be surface-modified. The nanoparticles can be used in many biological assays.
    Type: Grant
    Filed: December 16, 2010
    Date of Patent: December 6, 2016
    Assignees: CAPITALBIO CORPORATION, TSINGHUA UNIVERSITY
    Inventors: Huachang Lu, Guangshun Yi, Depu Chen, Lianghong Guo, Jing Cheng
  • Publication number: 20120228386
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: May 21, 2012
    Publication date: September 13, 2012
    Applicant: Aviva Biosciences Corporation
    Inventors: Lei WU, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Publication number: 20110177339
    Abstract: This invention provides nanometer-sized fluorescent magnetic particles and processes of making them. The nanoparticle has a core particle comprising a magnetic material and a fluorescent material, and the particle size is less than about 1 micrometer. The nanoparticles can be coated with an inorganic or organic layer and can be surface-modified. The nanoparticles can be used in many biological assays.
    Type: Application
    Filed: December 16, 2010
    Publication date: July 21, 2011
    Inventors: Huachang Lu, Guangshun Yi, Depu Chen, Lianghong Guo, Jing Cheng
  • Patent number: 7875466
    Abstract: This invention provides nanometer-sized fluorescent magnetic particles and processes of making them. The nanoparticle has a core particle comprising a magnetic material and a fluorescent material, and the particle size is less than about 1 micrometer. The nanoparticles can be coated with an inorganic or organic layer and can be surface-modified. The nanoparticles can be used in many biological assays.
    Type: Grant
    Filed: August 13, 2003
    Date of Patent: January 25, 2011
    Assignees: CapitalBio Corporation, Tsinghua University
    Inventors: Huachang Lu, Guangshun Yi, Depu Chen, Lianghong Guo, Jing Cheng
  • Publication number: 20100260984
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof. In certain embodiments, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: April 14, 2010
    Publication date: October 14, 2010
    Applicants: AVIVA BIOSCIENCES CORPORATION, TSINGHUA UNIVERSITY, CAPITALBIO CORPORATION
    Inventors: Lei WU, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7811768
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on the substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: October 12, 2010
    Assignees: Aviva Biosciences Corporation, Tsinghua University, CAPTIALBIO Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7776543
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on the substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Grant
    Filed: August 7, 2001
    Date of Patent: August 17, 2010
    Assignees: Aviva Biosciences Corporation, Tsinghua University, CAPTIALBIO Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7776580
    Abstract: This invention relates generally to the field of cell seperation. In particular, the invention provides processes for isolating a target cell, cellular organelle or virus from a sample, using inter alia, nonspecific binding between a target cell, cellular organelle or virus with a magnetic microbead modified to comprise hydroxyl, carboxyl or epoxy groups.
    Type: Grant
    Filed: December 31, 2002
    Date of Patent: August 17, 2010
    Assignees: CapitalBio Corporation, Tsinghua University
    Inventors: Xu Zhang, Xin Xie, Depu Chen, Weiyang Fei, Jing Cheng
  • Patent number: 7718419
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Grant
    Filed: August 20, 2007
    Date of Patent: May 18, 2010
    Assignee: Aviva Biosciences Corporation
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxian Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 7422703
    Abstract: Nanometer-scaled up-converting fluoride phosphor particles and processes of making them are disclosed. In the process, an aqueous solution consisting of soluble salts of rare-earth metal ions at a molar ratio of (yttrium, lanthanum or gadolinium): ytterbium:(erbium, holmium, terbium or thulium)=(70-90):(0-29):(0.001-15) is mixed a rare-earth metal chelator and a soluble fluoride salt to form precipitates, which are then annealed at an elevated temperature to produce nanometer-scaled up-converting fluoride phosphor particles. The particle size is between 35 nm and 200 nm, and can be controlled by the amount of the metal chelator added to the solution. The nanometer-sized particle is applicable to many biological assays.
    Type: Grant
    Filed: April 15, 2003
    Date of Patent: September 9, 2008
    Assignee: Capital Biochip Company Ltd
    Inventors: Guangshun Yi, Baoquan Sun, Depu Chen, Yuxiang Zhou, Jing Cheng, Wenjun Yang, Yue Ge, Lianghong Guo
  • Publication number: 20080200349
    Abstract: This invention relates generally to the field of moiety or molecule isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a magnetizable substance; and b) a photorecognizable coding pattern, wherein said microdevice has a preferential axis of magnetization. Systems and methods for isolating, detecting and manipulating moieties and synthesizing libraries using the microdevices are also provided.
    Type: Application
    Filed: August 20, 2007
    Publication date: August 21, 2008
    Applicants: AVIVA BIOSCIENCES CORPORATION, TSINGHUA UNIVERSITY, CAPITAL BIOCHIP CORPORATION
    Inventors: Lei Wu, Xiaobo Wang, Guoliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Publication number: 20070059705
    Abstract: This invention provides nanometer-sized fluorescent magnetic particles and processes of making them. The nanoparticle has a core particle comprising a magnetic material and a fluorescent material, and the particle size is less than about 1 micrometer. The nanoparticles can be coated with an inorganic or organic layer and can be surface-modified. The nanoparticles can be used in many biological assays.
    Type: Application
    Filed: August 13, 2003
    Publication date: March 15, 2007
    Inventors: Huachang Lu, Guangshun Yi, Depu Chen, Lianghong Guo, Jing Cheng
  • Publication number: 20060166190
    Abstract: This invention relates generally to the field of nucleic acid amplification. In particular, the invention provides processes and kits for amplifying a nucleic acid of a target cell or virus using, using inter alia, binding between a target cell, cellular organelle or virus with a magnetic microbead.
    Type: Application
    Filed: December 31, 2002
    Publication date: July 27, 2006
    Inventors: Xin Xie, Xu Zhang, Depu Chen, Weiyang Fei, Jing Chen
  • Publication number: 20060141450
    Abstract: This invention relates generally to the field of. In particular, the invention provides processes and kits for isolating a target cell, cellular organelle or virus from a sample, using inter alia, non- or low-specific binding between a target cell, cellular organelle or virus with a magnetic microbead.
    Type: Application
    Filed: December 31, 2002
    Publication date: June 29, 2006
    Inventors: Xu Zhang, Xin Xie, Depu Chen, Weiyang Fei, Jing Cheng
  • Publication number: 20060003466
    Abstract: Nanometer-scaled up-converting fluoride phosphor particles and processes of making them are disclosed. In the process, an aqueous solution consisting of soluble salts of rare-earth metal ions at a molar ratio of (yttrium, lanthanum or gadolinium): ytterbium:(erbium, holmium, terbium or thulium)=(70-90):(0-29):(0.001-15) is mixed a rare-earth metal chelator and a soluble fluoride salt to form precipitates, which are then annealed at an elevated temperature to produce nanometer-scaled up-converting fluoride phosphor particles. The particle size is between 35 nm and 200 nm, and can be controlled by the amount of the metal chelator added to the solution. The nanometer-sized particle is applicable to many biological assays.
    Type: Application
    Filed: April 15, 2003
    Publication date: January 5, 2006
    Inventors: Guangshun Yi, Baoquan Sun, Depu Chen, Yuxiang Zhou, Jing Cheng, Wenjun Yang, Yue Ge, Lianghong Guo
  • Publication number: 20050009002
    Abstract: This invention relates generally to the field of production of coated magnetizable microparticles and uses thereof. In particular, the invention provides a process for producing coated magnetizable microparticles with active functional groups, which process uses, inter alia, conducting polymerization of said coating monomers on the surface of magnetic particle to form coated magnetizable microparticles with active functional groups in the presence of a coupling agent, coating monomers, a functionalization reagent, a cross-linking agent and an initiator in an organic solvent containing a surfactant. The coated magnetizable microparticles produced according to the present processes and uses of the coated magnetizable microparticles, e.g., in isolating and/or manipulating various moieties are also provided.
    Type: Application
    Filed: March 20, 2002
    Publication date: January 13, 2005
    Inventors: Depu Chen, Xin Xie, Xu Zhang, Baoquan Sun
  • Patent number: 6806050
    Abstract: This invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents. An electromagnetic biochip comprises an individually addressable micro-electromagnetic unit chip with ligand molecules immobilized on its surface. By controlling the electromagnetic field at each unit of the array and combining this control with magnetic modification of biomolecules, these chips can be used for directed manipulation, synthesis and release of biomolecules in order to increase sensitivity of biochemical or chemical analysis and reduce assay time. Other advantages with these chips include minimized damages to biological molecules and increased reproducibility of assay results.
    Type: Grant
    Filed: September 18, 2001
    Date of Patent: October 19, 2004
    Assignee: AVIVA Biosciences
    Inventors: Yuxiang Zhou, Litian Liu, Ken Chen, Depu Chen, Jia Wang, Zewen Liu, Zhimin Tan, Junquan Xu, Xiaoshan Zhu, Xuezhong He, Wenzhang Xie, Zhiming Li, Xiumel Liu
  • Publication number: 20020137059
    Abstract: This invention relates generally to the field of moiety or molecule analysis, isolation, detection and manipulation and library synthesis. In particular, the invention provides a microdevice, which microdevice comprises: a) a substrate; and b) a photorecognizable coding pattern on said substrate. Preferably, the microdevice does not comprise an anodized metal surface layer. Methods and kits for isolating, detecting and manipulating moieties, and synthesizing libraries using the microdevices are also provided. The invention further provides two-dimensional optical encoders and uses thereof.
    Type: Application
    Filed: August 7, 2001
    Publication date: September 26, 2002
    Inventors: Lei Wu, Xiaobo Wang, Gouliang Tao, Junquan Xu, Jing Cheng, Mingxiang Huang, Baoquan Sun, Wei Shao, Litian Liu, Depu Chen, David M. Rothwarf, Weiping Yang
  • Patent number: 6355491
    Abstract: This invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents. An electromagnetic biochip comprises an individually addressable micro-electromagnetic unit chip with ligand molecules immobilized on its surface. By controlling the electromagnetic field at each unit of the array and combining this control with magnetic modification of biomolecules, these chips can be used for directed manipulation, synthesis and release of biomolecules in order to increase sensitivity of biochemical or chemical analysis and reduce assay time. Other advantages with these chips include minimized damages to biological molecules and increased reproducibility of assay results.
    Type: Grant
    Filed: September 17, 1999
    Date of Patent: March 12, 2002
    Assignee: Aviva Biosciences
    Inventors: Yuxiang Zhou, Litian Liu, Ken Chen, Depu Chen, Jia Wang, Zewen Liu, Zhimin Tan, Junquan Xu, Xiaoshan Zhu, Xuezhong He, Wenzhang Xie, Zhiming Li, Xiumei Liu
  • Publication number: 20020022276
    Abstract: This invention provides electromagnetic chips and electromagnetic biochips having arrays of individually addressable micro-electromagnetic units, as well as methods of utilizing these chips for directed manipulation of micro-particles and micro-structures such as biomolecules and chemical reagents. An electromagnetic biochip comprises an individually addressable micro-electromagnetic unit chip with ligand molecules immobilized on its surface. By controlling the electromagnetic field at each unit of the array and combining this control with magnetic modification of biomolecules, these chips can be used for directed manipulation, synthesis and release of biomolecules in order to increase sensitivity of biochemical or chemical analysis and reduce assay time. Other advantages with these chips include minimized damages to biological molecules and increased reproducibility of assay results.
    Type: Application
    Filed: September 18, 2001
    Publication date: February 21, 2002
    Inventors: Yuxiang Zhou, Litian Liu, Ken Chen, Depu Chen, Jia Wang, Zewen Liu, Zhimin Tan, Junquan Xu, Xiaoshan Zhu, Xuezhong He, Wenzhang Xie, Zhiming Li, Xiumei Liu