Patents by Inventor Deqiang Wang

Deqiang Wang has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210171536
    Abstract: The present application relates to a crystalline form of 4-(4-chloroanilino)-7-(2-methylaminocarbonyl-4-oxymethyl)pyridylfuro[2,3-d]pyridazine mesylate (EOC315) that contains crystalline form Mod. I. The present application also relates to a process for the preparation of the crystalline form and the pharmaceutical use of the crystalline form.
    Type: Application
    Filed: February 19, 2021
    Publication date: June 10, 2021
    Applicant: Taizhou EOC Pharma Co., Ltd.
    Inventors: Heting LI, Deqiang WANG, Wei CHANG, Hongrui YU, Xiaoming ZOU
  • Patent number: 10954246
    Abstract: A crystalline form of Mod. I of Formula I: And, a process for the preparation of the crystalline form and a pharmaceutical use of the crystalline form.
    Type: Grant
    Filed: October 11, 2019
    Date of Patent: March 23, 2021
    Assignee: Taizhou EOC Pharma Co., Ltd.
    Inventors: Heting Li, Deqiang Wang, Wei Chang, Hongrui Yu, Xiaoming Zou
  • Patent number: 10877020
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Grant
    Filed: July 20, 2017
    Date of Patent: December 29, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 10612085
    Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.
    Type: Grant
    Filed: June 23, 2015
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
  • Patent number: 10612084
    Abstract: A mechanism is provided for reducing entropy of a polyelectrolyte before the polyelectrolyte moves through a nanopore. A free-standing membrane has the nanopore formed through the membrane. An agarose gel is formed onto either and/or both sides of the nanopore in the membrane. The agarose gel is a porous material. The polyelectrolyte is uncoiled by driving the polyelectrolyte through the porous material of the agarose gel via an electric field. Driving the polyelectrolyte, having been uncoiled and linearized by the agarose gel, into the nanopore is for sequencing.
    Type: Grant
    Filed: December 30, 2014
    Date of Patent: April 7, 2020
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Gustavo A. Stolovitzky, George F. Walker, Chao Wang, Deqiang Wang
  • Publication number: 20200071336
    Abstract: The present application relates to a crystalline form of 4-(4-chloroanilino)-7-(2-methylaminocarbonyl-4-oxymethyl)pyridylfuro[2,3-d]pyridazine mesylate (EOC315) that contains crystalline form Mod. I. The present application also relates to a process for the preparation of the crystalline form and the pharmaceutical use of the crystalline form.
    Type: Application
    Filed: October 11, 2019
    Publication date: March 5, 2020
    Applicant: Taizhou EOC Pharma Co., Ltd.
    Inventors: Heting LI, Deqiang WANG, Wei CHANG, Hongrui YU, Xiaoming ZOU
  • Patent number: 10464061
    Abstract: A technique includes forming a gradient channel with width and depth gradients. A mask is disposed on top of a substrate. The mask is patterned with at least one elongated channel pattern having different elongated channel pattern widths. A channel is etched in the substrate in a single etching step, the channel having a width gradient and a corresponding depth gradient both simultaneously etched in the single etching step according to the different elongated channel pattern widths in the mask.
    Type: Grant
    Filed: April 12, 2016
    Date of Patent: November 5, 2019
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORTAION
    Inventors: Jingwei Bai, Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 10099679
    Abstract: A battery management system for an electrified powertrain of a hybrid vehicle includes one or more sensors configured to measure voltage, current, and temperature for a battery system of the hybrid vehicle and a controller. The controller is configured to obtain an equivalent circuit model for the battery system, determine a set of states for the battery system to be estimated, determine a set of parameters for the battery system to be estimated, receive, from the sensor(s), the measured voltage, current, and temperature for the battery system, using the equivalent circuit model and the measured voltage, current, and temperature of the battery system, estimate the sets of states and parameters for the battery system using a mixed sigma-point Kalman filtering (SPKF) and recursive least squares (RLS) technique, and using the sets of estimated states/parameters for the battery system, control an electric motor of the electrified vehicle.
    Type: Grant
    Filed: October 20, 2016
    Date of Patent: October 16, 2018
    Assignees: FCA US LLC, MCMASTER UNIVERSITY
    Inventors: Deqiang Wang, Pawel Malysz, Hong Yang, Ali Emadi
  • Patent number: 10094805
    Abstract: Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
    Type: Grant
    Filed: May 1, 2017
    Date of Patent: October 9, 2018
    Assignee: International Business Machines Corporation
    Inventors: Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 10040682
    Abstract: A technique for a nanodevice is provided. The nanodevice includes a fluidic cell, and a membrane dividing the fluidic cell. A nanopore is formed through the membrane, and the nanopore is coated with an organic compound. A first part of the organic compound binds to a surface of the nanopore and a second part of the organic compound is exposed freely inside of the nanopore. The second part of the organic compound is configured to be switched among a first neutral hydrophilic end group, a second negatively charged hydrophilic end group, and a third neutral hydrophobic end group based on a switching mechanism.
    Type: Grant
    Filed: May 7, 2012
    Date of Patent: August 7, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Gustavo A. Stolovitzky, Deqiang Wang
  • Patent number: 10029915
    Abstract: A technique for a nanodevice is provided. The nanodevice includes a fluidic cell, and a membrane dividing the fluidic cell. A nanopore is formed through the membrane, and the nanopore is coated with an organic compound. A first part of the organic compound binds to a surface of the nanopore and a second part of the organic compound is exposed freely inside of the nanopore. The second part of the organic compound is configured to be switched among a first neutral hydrophilic end group, a second negatively charged hydrophilic end group, and a third neutral hydrophobic end group based on a switching mechanism.
    Type: Grant
    Filed: April 4, 2012
    Date of Patent: July 24, 2018
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Ali Afzali-Ardakani, Stefan Harrer, Binquan Luan, Hongbo Peng, Gustavo A. Stolovitzky, Deqiang Wang
  • Patent number: 9983190
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Grant
    Filed: March 30, 2016
    Date of Patent: May 29, 2018
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20180111599
    Abstract: A battery management system for an electrified powertrain of a hybrid vehicle includes one or more sensors configured to measure voltage, current, and temperature for a battery system of the hybrid vehicle and a controller. The controller is configured to obtain an equivalent circuit model for the battery system, determine a set of states for the battery system to be estimated, determine a set of parameters for the battery system to be estimated, receive, from the sensor(s), the measured voltage, current, and temperature for the battery system, using the equivalent circuit model and the measured voltage, current, and temperature of the battery system, estimate the sets of states and parameters for the battery system using a mixed sigma-point Kalman filtering (SPKF) and recursive least squares (RLS) technique, and using the sets of estimated states/parameters for the battery system, control an electric motor of the electrified vehicle.
    Type: Application
    Filed: October 20, 2016
    Publication date: April 26, 2018
    Inventors: Deqiang Wang, Pawel Malysz, Hong Yang, Ali Emadi
  • Publication number: 20180003694
    Abstract: A wet cell apparatus is provided and includes a sensor body defining a nano-pore by which respective cell interiors are fluidly communicative and a scanning probe microscope (SPM) tip. The SPM tip is configured to draw a molecule through the nano-pore from one of the respective cell interiors whereby sensing components of the sensor body identify molecule components as the molecule passes through the nano-pore.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 4, 2018
    Inventors: John A. Ott, Michael A. Pereira, Deqiang Wang
  • Publication number: 20170320058
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Application
    Filed: July 20, 2017
    Publication date: November 9, 2017
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 9776184
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Grant
    Filed: March 18, 2016
    Date of Patent: October 3, 2017
    Assignee: International Business Machines Corporation
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20170234833
    Abstract: Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
    Type: Application
    Filed: May 1, 2017
    Publication date: August 17, 2017
    Inventors: Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Patent number: 9658184
    Abstract: Techniques for increasing the capture zone in nano and microchannel-based polymer testing structures using concentric arrangements of nanostructures, such as nanopillars are provided. In one aspect, a testing structure for testing polymers is provided that includes a first fluid reservoir and a second fluid reservoir formed in an electrically insulating substrate; at least one channel formed in the insulating substrate that interconnects the first fluid reservoir and the second fluid reservoir; and an arrangement of nanostructures within either the first fluid reservoir or the second fluid reservoir wherein the nanostructures are arranged so as to form multiple concentric circles inside either the first fluid reservoir or the second fluid reservoir with each of the concentric circles being centered at an entry point of the channel. A method of analyzing a polymer using the testing structure is also provided.
    Type: Grant
    Filed: May 7, 2014
    Date of Patent: May 23, 2017
    Assignee: International Business Machines Corporation
    Inventors: Binquan Luan, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20160209394
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Application
    Filed: March 30, 2016
    Publication date: July 21, 2016
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang
  • Publication number: 20160199833
    Abstract: A device for passing a biopolymer molecule includes a nanochannel formed between a surface relief structure, a patterned layer forming sidewalls of the nanochannel and a sealing layer formed over the patterned layer to encapsulate the nanochannel. The surface relief structure includes a three-dimensionally rounded surface that reduces a channel dimension of the nanochannel at a portion of nanochannel and gradually increases the dimension along the nanochannel toward an opening position, which is configured to receive a biopolymer.
    Type: Application
    Filed: March 18, 2016
    Publication date: July 14, 2016
    Inventors: Qinghuang Lin, Gustavo A. Stolovitzky, Chao Wang, Deqiang Wang