Patents by Inventor Der-Chen CHANG
Der-Chen CHANG has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12211623Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: GrantFiled: November 29, 2023Date of Patent: January 28, 2025Assignee: Georgetown UniversityInventors: Ophir Frieder, Hao-Ren Yao, Der-Chen Chang
-
Publication number: 20240233943Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: ApplicationFiled: November 29, 2023Publication date: July 11, 2024Inventors: Ophir Frieder, Hao-Ren Yao, Der-Chen Chang
-
Patent number: 11869664Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: GrantFiled: June 29, 2022Date of Patent: January 9, 2024Assignee: Georgetown UniversityInventors: Ophir Frieder, Hao-Ren Yao, Der-Chen Chang
-
Publication number: 20220344022Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: ApplicationFiled: June 29, 2022Publication date: October 27, 2022Inventors: Ophir Frieder, Hao-Ren Yao, Der-Chen Chang
-
Patent number: 11410763Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: GrantFiled: December 20, 2021Date of Patent: August 9, 2022Assignee: Georgetown UniversityInventors: Ophir Frieder, Hao-Ren Yao, Der-Chen Chang
-
Publication number: 20220115104Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: ApplicationFiled: December 20, 2021Publication date: April 14, 2022Inventors: Ophir Frieder, Hao-Ren Yao, Der-Chen Chang
-
Patent number: 11238966Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: GrantFiled: November 3, 2020Date of Patent: February 1, 2022Assignee: Georgetown UniversityInventors: Ophir Frieder, Hao-Ren Yao, Der-Chen Chang
-
Publication number: 20210134418Abstract: Embodiments of the present systems and methods may provide techniques to predict the success or failure of a drug used for disease treatment. For example, a method of determining drug efficacy may include, for a plurality of patients, generating a directed acyclic graph from health related information of each patient comprising nodes representing a medical event of the patient, at least one first edge connecting the first node to an additional node, each additional edge connecting nodes representing two consecutive medical events, the edge having a weight based on a time difference between the two consecutive medical events, capturing a plurality of features from each directed acyclic graph, generating a binary graph classification model on captured features of each directed acyclic graph, determining a probability that a drug or treatment will be effective using the binary graph classification model, and determining a drug to be prescribed to a patient based on the determined probability.Type: ApplicationFiled: November 3, 2020Publication date: May 6, 2021Applicant: Georgetown UniversityInventors: Ophir FRIEDER, Hao-Ren YAO, Der-Chen CHANG