Patents by Inventor Der-Hsien Lien

Der-Hsien Lien has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10340448
    Abstract: All-printed paper-based substrate memory devices are described. In an embodiment, a paper-based memory device is prepared by coating one or more areas of a paper substrate with a conductor material such as a carbon paste, to form a first electrode of a memory, depositing a layer of insulator material, such as titanium dioxide, over one or more areas of the conductor material, and depositing a layer of metal over one or more areas of the insulator material to form a second electrode of the memory. In an embodiment, the device can further include diodes printed between the insulator material and the second electrode, and the first electrode and the second electrodes can be formed as a crossbar structure to provide a WORM memory. The various layers and the diodes can be printed onto the paper substrate by, for example, an ink jet printer.
    Type: Grant
    Filed: December 10, 2015
    Date of Patent: July 2, 2019
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jr-Hau He, Chun-Ho Lin, Der-Hsien Lien
  • Patent number: 9852927
    Abstract: Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8±0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.
    Type: Grant
    Filed: October 15, 2016
    Date of Patent: December 26, 2017
    Assignee: The Regents of the University of California
    Inventors: Matin Amani, Der-Hsien Lien, Daisuke Kiriya, James Bullock, Ali Javey
  • Patent number: 9853088
    Abstract: All-printed paper-based substrate memory devices are described. In an embodiment, a paper-based memory device is prepared by coating one or more areas of a paper substrate with a conductor material such as a carbon paste, to form a first electrode of a memory, depositing a layer of insulator material, such as titanium dioxide, over one or more areas of the conductor material, and depositing a layer of metal over one or more areas of the insulator material to form a second electrode of the memory. In an embodiment, the device can further include diodes printed between the insulator material and the second electrode, and the first electrode and the second electrodes can be formed as a crossbar structure to provide a WORM memory. The various layers and the diodes can be printed onto the paper substrate by, for example, an ink jet printer.
    Type: Grant
    Filed: December 31, 2015
    Date of Patent: December 26, 2017
    Assignee: KING ABDULLAH UNIVERSITY OF SCIENCE AND TECHNOLOGY
    Inventors: Jr-Hau He, Chun-Ho Lin, Der-Hsien Lien
  • Publication number: 20170365779
    Abstract: All-printed paper-based substrate memory devices are described. In an embodiment, a paper-based memory device is prepared by coating one or more areas of a paper substrate with a conductor material such as a carbon paste, to form a first electrode of a memory, depositing a layer of insulator material, such as titanium dioxide, over one or more areas of the conductor material, and depositing a layer of metal over one or more areas of the insulator material to form a second electrode of the memory. In an embodiment, the device can further include diodes printed between the insulator material and the second electrode, and the first electrode and the second electrodes can be formed as a crossbar structure to provide a WORM memory. The various layers and the diodes can be printed onto the paper substrate by, for example, an ink jet printer.
    Type: Application
    Filed: December 10, 2015
    Publication date: December 21, 2017
    Inventors: JR-HAU HE, CHUN-HO LIN, DER-HSIEN LIEN
  • Publication number: 20170110338
    Abstract: Two-dimensional (2D) transition-metal dichalcogenides have emerged as a promising material system for optoelectronic applications, but their primary figure-of-merit, the room-temperature photoluminescence quantum yield (QY) is extremely poor. The prototypical 2D material, MoS2 is reported to have a maximum QY of 0.6% which indicates a considerable defect density. We report on an air-stable solution-based chemical treatment by an organic superacid which uniformly enhances the photoluminescence and minority carrier lifetime of MoS2 monolayers by over two orders of magnitude. The treatment eliminates defect-mediated non-radiative recombination, thus resulting in a final QY of over 95% with a longest observed lifetime of 10.8±0.6 nanoseconds. Obtaining perfect optoelectronic monolayers opens the door for highly efficient light emitting diodes, lasers, and solar cells based on 2D materials.
    Type: Application
    Filed: October 15, 2016
    Publication date: April 20, 2017
    Applicant: The Regents of the University of California
    Inventors: Matin Amani, Der-Hsien Lien, Daisuke Kiriya, James Bullock, Ali Javey
  • Publication number: 20160190445
    Abstract: All-printed paper-based substrate memory devices are described. In an embodiment, a paper-based memory device is prepared by coating one or more areas of a paper substrate with a conductor material such as a carbon paste, to form a first electrode of a memory, depositing a layer of insulator material, such as titanium dioxide, over one or more areas of the conductor material, and depositing a layer of metal over one or more areas of the insulator material to form a second electrode of the memory. In an embodiment, the device can further include diodes printed between the insulator material and the second electrode, and the first electrode and the second electrodes can be formed as a crossbar structure to provide a WORM memory. The various layers and the diodes can be printed onto the paper substrate by, for example, an ink jet printer.
    Type: Application
    Filed: December 31, 2015
    Publication date: June 30, 2016
    Inventors: Jr-Hau He, Chun-Ho Lin, Der-Hsien Lien
  • Publication number: 20130116560
    Abstract: The present application relates to an ultrasound temperature mapping system and method. The ultrasound temperature mapping system for measuring a temperature of an object comprises an ultrasound transducer and a processing module. The ultrasound transducer is configured to acquire a first image and a second image with respect to the object. The processing module implements a zero-crossing algorithm to process the first image to yield a plurality of first zero-crossing points and implements a cross-correlation algorithm to process the first image and the second images based on the plurality of first zero-crossing points so as to obtain a plurality of displacements. The processing module further calculates the temperature based on the plurality of displacements.
    Type: Application
    Filed: March 13, 2012
    Publication date: May 9, 2013
    Applicant: National Taiwan University
    Inventors: Wen-Shiang CHEN, Der-Hsien Lien, Chuin-Shan Chen, Jay Shieh, Chiung-Nien Chen, Chien-Cheng Chang, Yu-Chen Shu, Chang-Wei Huang