Patents by Inventor Derek C. Johnson

Derek C. Johnson has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240069742
    Abstract: One aspect of the application can provide a system and method for replacing a failing node with a spare node in a non-uniform memory access (NUMA) system. During operation, in response to determining that a node-migration condition is met, the system can initialize a node controller of the spare node such that accesses to a memory local to the spare node are to be processed by the node controller, quiesce the failing node and the spare node to allow state information of processors on the failing node to be migrated to processors on the spare node, and subsequent to unquiescing the failing node and the spare node, migrate data from the failing node to the spare node while maintaining cache coherence in the NUMA system and while the NUMA system remains in operation, thereby facilitating continuous execution of processes previously executed on the failing node.
    Type: Application
    Filed: August 29, 2022
    Publication date: February 29, 2024
    Inventors: Thomas Edward McGee, Brian J. Johnson, Frank R. Dropps, Derek S. Schumacher, Stuart C. Haden, Michael S. Woodacre
  • Publication number: 20230219461
    Abstract: An apparatus and method for electrochemical energy storage for high-power and high-energy autonomous applications, including autonomous electric vehicles having remote active drive cycle monitoring and/or governance and thermal management control, are described. For autonomous vehicles, the apparatus includes: at least one high-power, low-energy density tertiary storage battery having low cost, and designed to wear and be replaceable; at least one high energy density core battery; at least one intermediate power and energy density secondary battery for buffering the load on the core battery; and a battery controller. The autonomous vehicle energy requirement and consumption rate are provided in such a manner that performance degradation over the life of the system is reduced.
    Type: Application
    Filed: March 3, 2023
    Publication date: July 13, 2023
    Applicant: Bia Power LLC
    Inventor: Derek C. Johnson
  • Patent number: 11666652
    Abstract: Methods for the generation of electrochemical plasma activated aqueous chemotherapeutics (EPAAC) solutions are described. These solutions have been found to selectively reduce the proliferation of human pancreatic cancer cells, with no toxic effects for healthy cells.
    Type: Grant
    Filed: March 27, 2020
    Date of Patent: June 6, 2023
    Assignee: Symbios Technologies, Inc.
    Inventors: Brooks M. Hybertson, Jessica M. Joslin, Justin P. Bzdek, Derek C. Johnson
  • Publication number: 20220359912
    Abstract: A coated hybrid electrode for a composite solid-state battery cell is disclosed. Systems and methods are further provided for forming an electrolyte coating including a solid ionically conductive polymer material in the coated hybrid electrode. In one example, the coated hybrid electrode can include an anode material coating, the solid polymer electrolyte coating, and a cathode material coating, such that the solid polymer electrolyte coating can function as a separator coating between the anode material coating and the cathode material coating, thus eliminating a need for a conventional battery separator. In some examples, a slurry-based coating process can be utilized for forming the solid polymer electrolyte coating. As such, the solid polymer electrolyte coating can be mechanically robust with uniform thickness. Further, a battery cell can be formed by utilizing a sub-assembly stacking technique to provide battery cell stiffness and increase precision and accuracy of coating.
    Type: Application
    Filed: June 30, 2020
    Publication date: November 10, 2022
    Applicant: Ionic Materials, Inc.
    Inventors: Wesley Hoffert, Adriana A. Rojas, David M. Laughman, Lucienne Buannic, Derek C. Johnson, Brian Sisk
  • Publication number: 20220020977
    Abstract: Methods and systems are provided for a cathode material for lithium ion batteries. In one example, the cathode material may include a lithium mixed metal oxide core and a surface coating surrounding the core. Optionally, a passivating layer may continuously surround the surface coating. In some examples, the surface coating or surface layer may include a sacrificial lithium source, a lithium-based active cathode catalyst, or a combination thereof. In other examples, methods are provided for manufacturing the cathode material for use in a lithium ion battery.
    Type: Application
    Filed: December 20, 2019
    Publication date: January 20, 2022
    Inventors: Derrick Maxwell, Xiangyang Zhu, Jun Wang, Taehwan Yu, Weidong Zhou, Sookyung Jeong, Derek C. Johnson, Linghong Zhang, Kerui Sun, Nathan Reinsma, Xiaorui Chen
  • Publication number: 20210391578
    Abstract: Methods and systems are provided for an electrode active material for lithium ion batteries. In one example, the electrode active material may include a lithium mixed metal oxide core and flame-retardant dusting particles partially retained within a surface of the core. In some examples, the dusting particles may have an average size of less than 20 ?m. In some examples, the amount of dusting particles by weight may be greater than 0.1% of the core particles and less than 50% of the core particles. In another example, methods are provided for manufacturing the electrode active material for use in a lithium ion battery, where lithium metal composite core particles may be mixed with the flame-retardant dusting particles in a dry process.
    Type: Application
    Filed: October 11, 2019
    Publication date: December 16, 2021
    Inventors: Lixin Wang, Weidong Zhou, Yao Chen, Chloe Harrison, Fu Zhou, Kitae Kim, Jun Wang, Derek C. Johnson
  • Publication number: 20210202940
    Abstract: A coated cathode material for lithium-ion batteries is disclosed. Methods and systems are further provided for applying a coating to an active cathode material for use in a lithium-ion battery. In one example, the coated cathode material may include a high-nickel content active cathode material, such as lithium nickel manganese cobalt oxide or lithium nickel aluminum cobalt oxide, coated with a coating including one or more high energy density active materials, such as lithium vanadium fluorophosphate and/or a lithium iron manganese phosphate compound. In some examples, the high-nickel content active cathode material may include greater than or equal to 60% nickel content.
    Type: Application
    Filed: April 18, 2019
    Publication date: July 1, 2021
    Inventors: Jianyang Li, Chuanjing Xu, Maha Rachid Hammoud, Taehwan Yu, Jun Wang, Derek C. Johnson, Fu Zhou
  • Publication number: 20210202948
    Abstract: A binder for an electrode is provided herein. In one example, the electrode may include a current collector, and an electrode coating layer, the electrode coating layer including an electrode active material and a binder, where the binder may comprise an aromatic polyamide-based compound, and the binder may be present at greater than 0 wt % and less than or equal to 30 wt % of the electrode coating layer. In one example, the binder provides stronger cohesion between particles of the electrode active material. Methods and systems are further provided for fabricating the electrode including the binder.
    Type: Application
    Filed: August 28, 2019
    Publication date: July 1, 2021
    Inventors: Lixin Wang, Chloe Harrison, Derek C. Johnson
  • Publication number: 20210005927
    Abstract: Systems and methods are provided for a slurry for coating an electrode structure. In one example, a method may include dispersing, by mixing at one or both of a high shear and a low shear, a solid ionically conductive polymer material in at least a first portion of a solvent to form a suspension, then dispersing, by mixing at the one or both of the high shear and the low shear, one or more additives in the suspension, and then mixing, at the one or both of the high shear and the low shear, a second portion of the solvent with the suspension to form a slurry. As such, the slurry including the solid ionically conductive polymer material may be applied as a coating in a solid-state battery cell, which may reduce resistance to Li-ion transport and improve mechanical stability relative to a conventional solid-state battery cell.
    Type: Application
    Filed: July 1, 2020
    Publication date: January 7, 2021
    Inventors: Wesley Hoffert, Adriana A. Rojas, David M. Laughman, Lucienne Buannic, Derek C. Johnson, Brian Sisk, Brian Chiou, Thomas Gillooly
  • Publication number: 20200395593
    Abstract: Methods and systems are provided for fabricating a large format lithium ion electrochemical cell that includes an anode and a cathode. In one example, the anode is prepared via loading the anode to a predetermined anode loading amount, followed by electrochemical pre-lithiation of the anode via electrically coupling an auxiliary electrode to the anode where lithium is transferred to the anode through an electrolyte solution from the auxiliary electrode. In this way, pre-lithiation of the anode may be improved, which may in turn increase a capacity of the large format lithium ion electrochemical cell.
    Type: Application
    Filed: June 12, 2020
    Publication date: December 17, 2020
    Inventors: Xiangyang Zhu, Weidong Zhou, Jun Wang, Hong Yan, Derek C. Johnson
  • Publication number: 20200365874
    Abstract: Methods and systems are provided for a battery cathode material comprising greater than or equal to 60% nickel content, the cathode material having at least one metal doped therein. In one example, a method comprises doping the at least one metal into the cathode material using water as a solvent, wherein the at least one metal has an ionic radii greater than 60 picometers. The at least one metal may be selected from strontium (Sr), barium (Ba), rubidium (Rb), cesium (Cs), zirconium (Zr), niobium (Nb), molybdenum (Mo), technetium (Tc), ruthenium (Ru), tungsten (W), platinum (Pt), neodymium (Nd), yttrium (Y), and cerium (Ce).
    Type: Application
    Filed: November 20, 2018
    Publication date: November 19, 2020
    Inventors: Lixin Wang, Weidong Zhou, Anil Parmar, Fu Zhou, Derek C. Johnson
  • Publication number: 20200358076
    Abstract: A doped cathode material for lithium-ion batteries is disclosed. Methods and systems are further provided for doping a cathode material for use in a lithium-ion battery. In one example, the doping may be a dry surface doping process. In some examples, dopants may stabilize a crystal structure of the cathode material and may result in fewer side reactions with an electrolyte as compared to an undoped cathode material. As such, cycling performance and capacity retention may be improved relative to the undoped cathode material. Further, in some examples, the doped cathode material produced with the dry surface doping process may have improved cycling performance and capacity retention relative to a comparable doped cathode material produced with a wet surface doping process.
    Type: Application
    Filed: April 29, 2020
    Publication date: November 12, 2020
    Inventors: Yang Shi, Kitae Kim, Lixin Wang, Yingjie Xing, Andrew Millonig, Bryan Kim, Derek C. Johnson
  • Publication number: 20200323982
    Abstract: Methods for the generation of electrochemical plasma activated aqueous chemotherapeutics (EPAAC) solutions are described. These solutions have been found to selectively reduce the proliferation of human pancreatic cancer cells, with no toxic effects for healthy cells.
    Type: Application
    Filed: March 27, 2020
    Publication date: October 15, 2020
    Applicant: Symbios Technologies, Inc.
    Inventors: Brooks M. Hybertson, Jessica M. Joslin, Justin P. Bzdek, Derek C. Johnson
  • Patent number: 10610590
    Abstract: Methods for the generation of electrochemical plasma activated aqueous chemotherapeutics (EPAAC) solutions are described. These solutions have been found to selectively reduce the proliferation of human pancreatic cancer cells, with no toxic effects for healthy cells.
    Type: Grant
    Filed: May 2, 2017
    Date of Patent: April 7, 2020
    Assignee: Symbios Technologies, Inc.
    Inventors: Brooks M. Hybertson, Jessica M. Joslin, Justin P. Bzdek, Derek C. Johnson
  • Patent number: 10290876
    Abstract: A lithium-ion battery including an electrodeposited anode material having a micron-scale, three-dimensional porous foam structure separated from interpenetrating cathode material that fills the void space of the porous foam structure by a thin solid-state electrolyte which has been reductively polymerized onto the anode material in a uniform and pinhole free manner, which will significantly reduce the distance which the Li-ions are required to traverse upon the charge/discharge of the battery cell over other types of Li-ion cell designs, and a procedure for fabricating the battery are described. The interpenetrating three-dimensional structure of the cell will also provide larger energy densities than conventional solid-state Li-ion cells based on thin-film technologies. The electrodeposited anode may include an intermetallic composition effective for reversibly intercalating Li-ions.
    Type: Grant
    Filed: August 2, 2012
    Date of Patent: May 14, 2019
    Assignee: Prieto Battery, Inc.
    Inventors: Amy L. Prieto, James M. Mosby, Derek C. Johnson, Matthew T. Rawls
  • Patent number: 9809896
    Abstract: An apparatus and method for measuring the isoelectric pH for materials deposited on or otherwise affixed onto and in contact with an electrode surface, and a method for utilizing the isoelectric pH to form nanometer thickness, self-assembled layers on the material, are described. Forming such layers utilizing information obtained about the isoelectric pH values of the substrate and the coating is advantageous since the growth of the coating is self-limiting because once the surface charge has been neutralized there is no longer a driving force for the solid electrolyte coating thickness to increase, and uniform coatings without pinhole defects will be produced because a local driving force for assembly will exist if any bare electrode material is exposed to the solution. The present self-assembly procedure, when combined with electrodeposition, may be used to increase the coating thickness.
    Type: Grant
    Filed: January 20, 2015
    Date of Patent: November 7, 2017
    Assignee: Colorado State University Research Foundation
    Inventors: Derek C. Johnson, Amy L. Prieto
  • Publication number: 20170312362
    Abstract: Methods for the generation of electrochemical plasma activated aqueous chemotherapeutics (EPAAC) solutions are described. These solutions have been found to selectively reduce the proliferation of human pancreatic cancer cells, with no toxic effects for healthy cells.
    Type: Application
    Filed: May 2, 2017
    Publication date: November 2, 2017
    Applicant: Symbios Technologies, Inc.
    Inventors: Brooks M. Hybertson, Jessica M. Joslin, Justin P. Bzdek, Derek C. Johnson
  • Patent number: 9748609
    Abstract: Electrochemical methods for probing solid polymer electrolyte surface coatings on electrically conducting, active, three-dimensional electrode materials for use in lithium-ion batteries, to quantitatively determine the conformity, uniformity, and the presence of pinholes, and/or other defects in coatings, without requiring the detachment of the coating from the electrode or otherwise inducing damage to the coating, are described. Coated electrodes are submersed in an electrolyte solution containing a redox-active probe species which does not induce electrochemical damage to either the working electrode or the solid polymer electrolyte surface coating. For coated Cu2Sb working electrodes, molecules including a water-soluble redox active viologen moiety have been found to be effective.
    Type: Grant
    Filed: October 21, 2013
    Date of Patent: August 29, 2017
    Assignee: Prieto Battery, Inc.
    Inventors: Derek C. Johnson, Amy L. Prieto, Matthew Rawls, Wesley A. Hoffert
  • Patent number: 9692083
    Abstract: Methods are described for forming insulating hybrid organic-inorganic solid electrolytes on conducting electrodes that are active materials in Li-ion batteries by electrochemical deposition, and for forming second conducting electrodes on the solid electrolytes using aqueous slurries, whereby Li-ion battery cells having solid electrolytes are generated. X-ray photoelectron spectroscopy is utilized for determining that the solid electrolytes are defect and pinhole free.
    Type: Grant
    Filed: July 31, 2013
    Date of Patent: June 27, 2017
    Assignee: Prieto Battery, Inc.
    Inventors: Amy L. Prieto, Derek C. Johnson, Matthew T. Rawls
  • Patent number: 9346691
    Abstract: An apparatus and method for simultaneously removing materials from fluids without the need for added chemicals, and without the formation of toxic byproducts, by high-density plasma reaction chemistry is described. Applications to removal of contaminants, such as pesticides, organics, PPCPs, and pathogens, as examples, from water are discussed. Changes in the quality of the raw water are not expected to adversely affect the decontamination process.
    Type: Grant
    Filed: May 13, 2011
    Date of Patent: May 24, 2016
    Assignee: Symbios Technologies, Inc.
    Inventor: Derek C. Johnson