Patents by Inventor Derek G. Kane

Derek G. Kane has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11449037
    Abstract: A flow meter, and related system and method are provided. The flow meter includes a coupler, a support member, an image sensor, a valve, and one or more processors. The coupler is adapted to couple to a drip chamber. The support member is operatively coupled to the coupler. The image sensor has a field of view and is operatively coupled to the support member. The image sensor is positioned to view the drip chamber within the field of view. The one or more processors are operatively coupled to the image sensor to receive image data therefrom and to the actuator to actuate the valve. The one or more processors are configured to estimate a flow of fluid through the drip chamber and to actuate the valve to control the flow of fluid through the drip chamber to achieve a target flow rate.
    Type: Grant
    Filed: August 10, 2020
    Date of Patent: September 20, 2022
    Assignee: DEKA Products Limited Partnership
    Inventors: Bob David Peret, Brian H. Yoo, Derek G. Kane, Dean Kamen, Colin H. Murphy, John M. Kerwin
  • Publication number: 20220290771
    Abstract: A system for regulating fluid flow having a processor configured to reduce image noise is provided. The system includes an image sensor to capture an image of the drip chamber. The processor captures the image of the drip chamber using the image sensor, performs an edge detection on the image to generate a first processed image, and performs a Boolean-operation on a pixel on a first side of an axis of the first processed image with a corresponding pixel on a second side of the axis of the first processed image to generate a second processed image.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 15, 2022
    Inventors: Bob D. Peret, Derek G. Kane, Dean Kamen, Colin H. Murphy, John M. Kerwin
  • Patent number: 11404070
    Abstract: A method for phoneme identification. The method includes receiving an audio signal from a speaker, performing initial processing comprising filtering the audio signal to remove audio features, the initial processing resulting in a modified audio signal, transmitting the modified audio signal to a phoneme identification method and a phoneme replacement method to further process the modified audio signal, and transmitting the modified audio signal to a speaker. Also, a system for identifying and processing audio signals. The system includes at least one speaker, at least one microphone, and at least one processor, wherein the processor processes audio signals received using a method for phoneme replacement.
    Type: Grant
    Filed: February 14, 2020
    Date of Patent: August 2, 2022
    Assignee: DEKA PRODUCTS LIMITED PARTNERSHIP
    Inventors: Dean Kamen, Derek G. Kane
  • Patent number: 11399995
    Abstract: A powered balancing mobility device that can provide the user the ability to safely navigate expected environments of daily living including the ability to maneuver in confined spaces and to climb curbs, stairs, and other obstacles, and to travel safely and comfortably in vehicles. The mobility device can provide elevated, balanced travel.
    Type: Grant
    Filed: July 13, 2018
    Date of Patent: August 2, 2022
    Assignee: DEKA Products Limited Partnership
    Inventors: Stewart M. Coulter, Brian G. Gray, Dirk A. van der Merwe, Susan D. Dastous, Daniel F. Pawlowski, Bob Peret, Dean Kamen, Derek G. Kane, Dave Doherty, Matthew A. Norris, Alexander D. Streeter, David J. Couture, Matthew J. Myers, Matthew B. Kinberger, Constance D. Pitenis, Allison E. Key-Wallace, David E. Collins, Erik N. Sabin, Katie A. DeLaurentis, Catharine N. Flynn, Elizabeth Rousseau, Thomas A. Doyon, Dale B. McGrath, Ryan Adams, Prashant Bhat, Trevor A. Conway, David J. Meehan, Tania M. F. Zirn, Paul R. Curtin, Zachary E. Cranfield, James J. Dattolo, Atlant G. Schmidt, III, Steven B. Meuse, George W. Marchant, Jr., Jeffrey C. Marrion
  • Patent number: 11339887
    Abstract: A system for regulating fluid flow having a processor configured to reduce image noise is provided. The system includes an image sensor to capture an image of the drip chamber. The processor captures the image of the drip chamber using the image sensor, performs an edge detection on the image to generate a first processed image, and performs an AND-operation on a pixel on a first side of an axis of the first processed image with a corresponding mirror pixel on a second side of the axis of the first processed image to generate a second processed image.
    Type: Grant
    Filed: November 13, 2020
    Date of Patent: May 24, 2022
    Assignee: DEKA Products Limited Partnership
    Inventors: Bob D. Peret, Derek G. Kane, Dean Kamen, Colin H. Murphy, John M. Kerwin
  • Patent number: 11299705
    Abstract: A system and method for growing and maintaining biological material including producing a protein associated with the tissue, selecting cells associated with the tissue, expanding the cells, creating at least one tissue bio-ink including the expanded cells, printing the at least one tissue bio-ink in at least one tissue growth medium mixture, growing the tissue from the printed at least one tissue bio-ink, and maintaining viability of the tissue.
    Type: Grant
    Filed: November 7, 2017
    Date of Patent: April 12, 2022
    Assignee: DEKA Products Limited Partnership
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Dean Kamen, Jason A. Demers, Frederick Morgan, Timothy D. Moreau, Brian D. Tracey, Matthew Ware, Richard J. Lanigan, Michael A. Baker, David Blumberg, Jr., Richard E. Gautney, Derek G. Kane, Dane Fawkes, Thomas J. Bollenbach, Michael C. Tilley, Stuart A. Jacobson, John F. Mannisto
  • Publication number: 20220041975
    Abstract: A system and method for growing and maintaining biological material including producing a protein associated with the tissue, selecting cells associated with the tissue, expanding the cells, creating at least one tissue bio-ink including the expanded cells, printing the at least one tissue bio-ink in at least one tissue growth medium mixture, growing the tissue from the printed at least one tissue bio-ink, and maintaining viability of the tissue.
    Type: Application
    Filed: September 2, 2021
    Publication date: February 10, 2022
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Dean Kamen, Jason A. Demers, Frederick Morgan, Timothy D. Moreau, Brian D. Tracey, Matthew Ware, Richard J. Lanigan, Michael A. Baker, David Blumberg, JR., Richard E. Gautney, Derek G. Kane, Dane Fawkes, Thomas J. Bollenbach, Michael C. Tilley, Stuart A. Jacobson, John F. Mannisto
  • Publication number: 20220003700
    Abstract: A magnetic resonance device for monitoring growth of tissue in one or more bioreactors. The device can include a first magnet and a second magnet that can form a uniform magnetic field of desired strength around at least one sample of effluent from at least one bioreactor. At the command of a controller, an RF signal can illuminate the at least one magnetized sample, and sensors can detect at least one echo signal from the at least one magnetized sample. The controller can characterize the at least one sample based on the at least one echo signal. A resonator can shape the at least one echo signal.
    Type: Application
    Filed: September 15, 2021
    Publication date: January 6, 2022
    Inventors: David Blumberg, JR., Michael C. Tilley, Derek G. Kane, David C. Nivens
  • Publication number: 20210395671
    Abstract: A system and method for growing and maintaining biological material including producing a protein associated with the tissue, selecting cells associated with the tissue, expanding the cells, creating at least one tissue bio-ink including the expanded cells, printing the at least one tissue bio-ink in at least one tissue growth medium mixture, growing the tissue from the printed at least one tissue bio-ink, and maintaining viability of the tissue.
    Type: Application
    Filed: September 2, 2021
    Publication date: December 23, 2021
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Dean Kamen, Jason A. Demers, Frederick Morgan, Timothy D. Moreau, Brian D. Tracey, Matthew Ware, Richard J. Lanigan, Michael A. Baker, David Blumberg, JR., Richard E. Gautney, Derek G. Kane, Dane Fawkes, Thomas J. Bollenbach, Michael C. Tilley, Stuart A. Jacobson, John F. Mannisto
  • Publication number: 20210395672
    Abstract: A system and method for growing and maintaining biological material including producing a protein associated with the tissue, selecting cells associated with the tissue, expanding the cells, creating at least one tissue bio-ink including the expanded cells, printing the at least one tissue bio-ink in at least one tissue growth medium mixture, growing the tissue from the printed at least one tissue bio-ink, and maintaining viability of the tissue.
    Type: Application
    Filed: September 2, 2021
    Publication date: December 23, 2021
    Inventors: Christopher C. Langenfeld, David D. B. Cannan, Dirk A. van der Merwe, Dean Kamen, Jason A. Demers, Frederick Morgan, Timothy D. Moreau, Brian D. Tracey, Matthew Ware, Richard J. Lanigan, Michael A. Baker, David Blumberg, JR., Richard E. Gautney, Derek G. Kane, Dane Fawkes, Thomas J. Bollenbach, Michael C. Tilley, Stuart A. Jacobson, John F. Mannisto
  • Patent number: 11125706
    Abstract: A magnetic resonance device for monitoring growth of tissue in one or more bioreactors. The device can include a first magnet and a second magnet that can form a uniform magnetic field of desired strength around at least one sample of effluent from at least one bioreactor. At the command of a controller, an RF signal can illuminate the at least one magnetized sample, and sensors can detect at least one echo signal from the at least one magnetized sample. The controller can characterize the at least one sample based on the at least one echo signal. A resonator can shape the at least one echo signal.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: September 21, 2021
    Assignee: DEKA Products Limited Partnership
    Inventors: David Blumberg, Jr., Michael C. Tilley, Derek G. Kane, David C. Nivens
  • Publication number: 20210278851
    Abstract: An autonomous vehicle having sensors advantageously varied in capabilities, advantageously positioned, and advantageously impervious to environmental conditions. A system executing on the autonomous vehicle that can receive a map including, for example, substantially discontinuous surface features along with data from the sensors, create an occupancy grid based upon the map and the data, and change the configuration of the autonomous vehicle based upon the type of surface on which the autonomous vehicle navigates. The device can safely navigate surfaces and surface features, including traversing discontinuous surfaces and other obstacles.
    Type: Application
    Filed: July 10, 2020
    Publication date: September 9, 2021
    Inventors: Dirk A. Van der Merwe, Arunabh Mishra, Christopher C. Langenfeld, Michael J. Slate, Christopher J. Principe, Gregory J. Buitkus, Justin M. Whitney, Raajitha Gummadi, Derek G. Kane, Emily A. Carrigg, Patrick Steele, Benjamin V. Hersh, FNU G Siva Perumal, David Carrigg, Daniel F. Pawlowski, Yashovardhan Chaturvedi, Kartik Khanna
  • Publication number: 20210208151
    Abstract: The present invention comprises a method for identifying the presence or absence of a pulmonary embolism using a combination of tests and brightline thresholds. The first test is a blood based test measuring D-Dimer concentration and the second test is a respiratory analysis that determines a carboximetry ratio. If the measured D-Dimer value is at or above a threshold indicative of concern and the carboximetry value is equal to or less than a carboximetry ratio threshold, pulmonary embolism is present. If the measured D-Dimer value is at or above a threshold indicative of concern and the respiratory analysis yields a carboximetry ratio greater than the carboximetry ratio threshold, test results are inconclusive and additional testing is required to determine whether a pulmonary embolism is present.
    Type: Application
    Filed: August 20, 2020
    Publication date: July 8, 2021
    Inventors: Gregory R. Lanier, JR., Derek G. Kane
  • Publication number: 20210180584
    Abstract: An apparatus for determining the volume of fluid dispensed. The apparatus has an acoustic volume sensor that acoustically excites a reference volume and a measurement chamber with a loudspeaker and measures the acoustic response with microphones acoustically coupled to the reference and the measurement chamber. The loudspeaker and sensing microphones are connected to the measurement chamber by separate ports. A detachable dispensing chamber is coupled to the acoustic volume sensor. The volume of the fluid dispensed is determined by a processor based on the acoustic response of the microphones to acoustic excitement by the loudspeaker.
    Type: Application
    Filed: February 12, 2021
    Publication date: June 17, 2021
    Inventors: Dean Kamen, Larry B. Gray, Russell H. Beavis, John M. Kerwin, Derek G. Kane
  • Patent number: 10995742
    Abstract: An apparatus for determining the volume of fluid dispensed. The apparatus has an acoustic volume sensor that acoustically excites a reference volume and a measurement chamber with a loudspeaker and measures the acoustic response with microphones acoustically coupled to the reference and the measurement chamber. The loudspeaker and sensing microphones are connected to the measurement chamber by separate ports. A detachable dispensing chamber is coupled to the acoustic volume sensor. The volume of the fluid dispensed is determined by a processor based on the acoustic response of the microphones to acoustic excitement by the loudspeaker.
    Type: Grant
    Filed: May 9, 2019
    Date of Patent: May 4, 2021
    Assignee: DEKA Products Limited Partnership
    Inventors: Dean Kamen, Larry B. Gray, Russell H. Beavis, John M. Kerwin, Derek G. Kane
  • Publication number: 20210125719
    Abstract: An apparatus, system and method for regulating fluid flow are disclosed. The apparatus includes a flow rate sensor and a valve. The flow rate sensor uses images to estimate flow through a drip chamber and then controls the valve based on the estimated flow rate. The valve comprises a rigid housing disposed around the tube in which fluid flow is being controlled. Increasing the pressure in the housing controls the size of the lumen within the tube by deforming the tube, therefore controlling flow through the tube.
    Type: Application
    Filed: December 31, 2020
    Publication date: April 29, 2021
    Inventors: Bob D. Peret, Brian H. Yoo, Derek G. Kane, Dean Kamen, Colin H. Murphy, John M. Kerwin
  • Publication number: 20210116271
    Abstract: A method for adjusting a flow rate of a fluid line is disclosed that includes one or more acts of: capturing an image of a drip chamber using an image sensor; identifying a plurality of pixels of interest within the image; determining a subset of pixels within the plurality of pixels of interest, wherein each pixel of the plurality of pixels is determined to be within the subset of pixels when there is a path to a baseline corresponding to the drip chamber; performing a rotation operation on the subset of pixels; estimating a volume of the drop within the drip chamber by counting a number of pixels within the rotated subset of pixels; and/or adjusting a flow rate of fluid flowing through a fluid line.
    Type: Application
    Filed: December 28, 2020
    Publication date: April 22, 2021
    Inventors: Derek G. Kane, Bob D. Peret, Colin H. Murphy, John M. Kerwin, Dean Kamen
  • Publication number: 20210096577
    Abstract: A user control device for a transporter. The user control device can communicate with the transporter via electrical interface(s) that can facilitate communication and data processing among the user interface device and controllers that can control the movement of the transporter. The user control device can perform automated actions based on the environment in which the transporter operates and the user's desired movement of the transporter. External applications can enable monitoring and control of the transporter.
    Type: Application
    Filed: September 8, 2020
    Publication date: April 1, 2021
    Inventors: Bob D. Peret, Stewart M. Coulter, Dean Kamen, Derek G. Kane
  • Publication number: 20210062929
    Abstract: A system for regulating fluid flow having a processor configured to reduce image noise is provided. The system includes an image sensor to capture an image of the drip chamber. The processor captures the image of the drip chamber using the image sensor, performs an edge detection on the image to generate a first processed image, and performs an AND-operation on a pixel on a first side of an axis of the first processed image with a corresponding mirror pixel on a second side of the axis of the first processed image to generate a second processed image.
    Type: Application
    Filed: November 13, 2020
    Publication date: March 4, 2021
    Inventors: Bob D. Peret, Derek G. Kane, Dean Kamen, Colin H. Murphy, John M. Kerwin
  • Patent number: 10894638
    Abstract: An apparatus, system and method for regulating fluid flow are disclosed. The apparatus includes a flow rate sensor and a valve. The flow rate sensor uses images to estimate flow through a drip chamber and then controls the valve based on the estimated flow rate. The valve comprises a rigid housing disposed around the tube in which fluid flow is being controlled. Increasing the pressure in the housing controls the size of the lumen within the tube by deforming the tube, therefore controlling flow through the tube.
    Type: Grant
    Filed: August 26, 2016
    Date of Patent: January 19, 2021
    Assignee: DEKA Products Limited Partnership
    Inventors: Bob D. Peret, Brian H. Yoo, Derek G. Kane, Dean Kamen, Colin H. Murphy, John M. Kerwin