Patents by Inventor Derek K. Shaeffer

Derek K. Shaeffer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240038129
    Abstract: Hybrid architectures and method methods of operating a display panel are described. In an embodiment, row driver and pixel driver functions are combined in a group of backbone hybrid pixel driver chips, wherein global signal lines are distributed to the backbone hybrid pixel driver chips, where the global signals are manipulated and distributed to a row of pixel driver chips.
    Type: Application
    Filed: June 28, 2023
    Publication date: February 1, 2024
    Inventors: Xiang Lu, Mahdi Farrokh Baroughi, Xiaofeng Wang, Derek K. Shaeffer, Henry C. Jen, Hopil Bae
  • Publication number: 20240012515
    Abstract: Touch sensitive display technologies (e.g., integrated touch-display pixel-based systems) are evolving to contain more analog and digital circuits inside the panel itself instead of the traditionally simple thin-film transistors. This improves the display characteristics but makes those circuits more vulnerable to the impact of external ESD strikes, which can degrade the user experience. This disclosure describes a series of circuits and techniques to mitigate the impact of these discharges on front of screen artifacts and potential false touches. These circuits and techniques may include: performing configuration-only panel updates independently of the image refresh rate, improving the in-panel memory circuits to make them resistant to unexpected pin toggles via disabling of a write path in response to a read clock, implementing a pin corruption detector and implementing a supply injection detector.
    Type: Application
    Filed: June 20, 2023
    Publication date: January 11, 2024
    Inventors: Pablo Moreno Galbis, Xiang Lu, Bin Huang, Ling Zhang, Nikhil Acharya, Derek K. Shaeffer, Stanley B. Wang, Yongjie Jiang, Hopil Bae, Jiayi Jin, Ce Zhang, Young Don Bae, Giovanni Azzellino, Wooseung Yang, Mahdi Farrokh Baroughi, Weijun Yao, Rajesh Velayuthan, Eric A. Hildebrandt, Henry C. Jen
  • Publication number: 20240004491
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LED s/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Application
    Filed: September 15, 2023
    Publication date: January 4, 2024
    Inventors: Christian M. SAUER, Christoph H. KRAH, Derek K. SHAEFFER, Hasan AKYOL, Henry C. JEN, John T. WETHERELL
  • Publication number: 20230316998
    Abstract: Local passive matrix displays and methods of operation are described. In an embodiment, the display includes a pixel driver chip coupled with a matrix of rows and columns of LEDs. The pixel driver chips may be arranged in rows across the display with separate portions to operate separate matrices of LEDs.
    Type: Application
    Filed: April 4, 2023
    Publication date: October 5, 2023
    Inventors: Derek K. Shaeffer, Mahdi Farrokh Baroughi, Xiaofeng Wang, Sam S. Li, John T. Wetherell, Henry C. Jen, Xiang Lu, Hasan Akyol, Hopil Bae, Xiang Fang, Hjalmar Edzer Ayco Huitema, Tore Nauta
  • Patent number: 11775095
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Grant
    Filed: July 23, 2021
    Date of Patent: October 3, 2023
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Christoph H. Krah, Derek K. Shaeffer, Hasan Akyol, Henry C. Jen, John T. Wetherell, Thierry S. Divel
  • Patent number: 11727850
    Abstract: Hybrid architectures and method methods of operating a display panel are described. In an embodiment, row driver and pixel driver functions are combined in a group of backbone hybrid pixel driver chips, wherein global signal lines are distributed to the backbone hybrid pixel driver chips, where the global signals are manipulated and distributed to a row of pixel driver chips.
    Type: Grant
    Filed: April 22, 2022
    Date of Patent: August 15, 2023
    Assignee: Apple Inc.
    Inventors: Xiang Lu, Mahdi Farrokh Baroughi, Xiaofeng Wang, Derek K. Shaeffer, Henry C. Jen, Hopil Bae
  • Patent number: 11645976
    Abstract: Local passive matrix displays and methods of operation are described. In an embodiment, the display includes a pixel driver chip coupled with a matrix of rows and columns of LEDs. The pixel driver chips may be arranged in rows across the display with separate portions to operate separate matrices of LEDs.
    Type: Grant
    Filed: January 14, 2022
    Date of Patent: May 9, 2023
    Assignee: Apple Inc.
    Inventors: Derek K. Shaeffer, Mahdi Farrokh Baroughi, Xiaofeng Wang, Sam S. Li, John T. Wetherell, Henry C. Jen, Xiang Lu, Hasan Akyol, Hopil Bae, Xiang Fang, Hjalmar Edzer Ayco Huitema, Tore Nauta
  • Patent number: 11417250
    Abstract: A method of adjusting a test gray voltages applied to a component of an electronic display during a test frame between image frames, wherein the adjustment is based at least in part on the control signal to the component during a prior image frame. The method may reduce hysteresis effects on the extraction of sensed currents of the component during the test frame, which may increase the accuracy and/or consistency of determined parameters evaluated from the sensed currents. The determined parameters may include temperature and/or aging of the component. The determined parameters may be used to adjust control signals for the component and other components in a region near the component during the next image frame.
    Type: Grant
    Filed: September 28, 2018
    Date of Patent: August 16, 2022
    Assignee: Apple Inc.
    Inventors: Yongjun Li, Jiayi Jin, Maofeng Yang, Jun Li, Weijun Yao, Derek K. Shaeffer, Baris Cagdaser
  • Publication number: 20220246082
    Abstract: Hybrid architectures and method methods of operating a display panel are described. In an embodiment, row driver and pixel driver functions are combined in a group of backbone hybrid pixel driver chips, wherein global signal lines are distributed to the backbone hybrid pixel driver chips, where the global signals are manipulated and distributed to a row of pixel driver chips.
    Type: Application
    Filed: April 22, 2022
    Publication date: August 4, 2022
    Inventors: Xiang Lu, Mahdi Farrokh Baroughi, Xiaofeng Wang, Derek K. Shaeffer, Henry C. Jen, Hopil Bae
  • Publication number: 20220208091
    Abstract: Local passive matrix displays and methods of operation are described. In an embodiment, the display includes a pixel driver chip coupled with a matrix of rows and columns of LEDs. The pixel driver chips may be arranged in rows across the display with separate portions to operate separate matrices of LEDs.
    Type: Application
    Filed: January 14, 2022
    Publication date: June 30, 2022
    Inventors: Derek K. Shaeffer, Mahdi Farrokh Baroughi, Xiaofeng Wang, Sam S. Li, John T. Wetherell, Henry C. Jen, Xiang Lu, Hasan Akyol, Hopil Bae, Xiang Fang, Hjalmar Edzer Ayco Huitema, Tore Nauta
  • Patent number: 11341893
    Abstract: Hybrid architectures and method methods of operating a display panel are described. In an embodiment, row driver and pixel driver functions are combined in a group of backbone hybrid pixel driver chips, wherein global signal lines are distributed to the backbone hybrid pixel driver chips, where the global signals are manipulated and distributed to a row of pixel driver chips.
    Type: Grant
    Filed: November 4, 2020
    Date of Patent: May 24, 2022
    Assignee: Apple Inc.
    Inventors: Xiang Lu, Mahdi Farrokh Baroughi, Xiaofeng Wang, Derek K. Shaeffer, Henry C. Jen, Hopil Bae
  • Patent number: 11263963
    Abstract: Local passive matrix displays and methods of operation are described. In an embodiment, the display includes a pixel driver chip coupled with a matrix of rows and columns of LEDs. The pixel driver chips may be arranged in rows across the display with separate portions to operate separate matrices of LEDs.
    Type: Grant
    Filed: February 11, 2019
    Date of Patent: March 1, 2022
    Assignee: Apple Inc.
    Inventors: Derek K. Shaeffer, Mahdi Farrokh Baroughi, Xiaofeng Wang, Sam S. Li, John T. Wetherell, Henry C. Jen, Xiang Lu, Hasan Akyol, Hopil Bae, Xiang Fang, Hjalmar Edzer Ayco Huitema, Tore Nauta
  • Publication number: 20210357063
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Application
    Filed: July 23, 2021
    Publication date: November 18, 2021
    Inventors: Christian M. SAUER, Christoph H. KRAH, Derek K. SHAEFFER, Hasan AKYOL, Henry C. JEN, Hopil BAE, John T. WETHERELL, Thierry S. DIVEL, Xiang LU
  • Patent number: 11073927
    Abstract: An integrated touchscreen can include light emitting diodes or organic light emitting diodes (LEDs/OLEDs), display chiplets and touch chiplets disposed in a visible area of the integrated touch screen. For example, the LEDs/OLEDs, display chiplets and touch chiplets can be placed on a substrate by a micro-transfer tool. The integrated touchscreen can also include electrodes disposed in the visible area of the integrated touch screen. The electrodes can be capable of providing display functionality via the one or more display chiplets during display operation (e.g., operating as cathode terminals of the LEDs during the display operation) and capable of providing touch functionality via the touch chiplets during touch operation (e.g., touch node electrodes can be formed from groups of the electrodes and sensed). In some examples, the touch node electrodes can be formed and coupled to touch chiplets via the display chiplets.
    Type: Grant
    Filed: July 19, 2019
    Date of Patent: July 27, 2021
    Assignee: Apple Inc.
    Inventors: Christian M. Sauer, Christoph H. Krah, Derek K. Shaeffer, Hasan Akyol, Henry C. Jen, Hopil Bae, John T. Wetherell, Thierry S. Divel, Xiang Lu
  • Publication number: 20210166609
    Abstract: Hybrid architectures and method methods of operating a display panel are described. In an embodiment, row driver and pixel driver functions are combined in a group of backbone hybrid pixel driver chips, wherein global signal lines are distributed to the backbone hybrid pixel driver chips, where the global signals are manipulated and distributed to a row of pixel driver chips.
    Type: Application
    Filed: November 4, 2020
    Publication date: June 3, 2021
    Inventors: Xiang Lu, Mahdi Farrokh Baroughi, Xiaofeng Wang, Derek K. Shaeffer, Henry C. Jen, Hopil Bae
  • Patent number: 11004391
    Abstract: An electronic device includes an electronic display having an active area comprising a pixel. The electronic device also includes processing circuitry configured to receive image data and predict a change in threshold voltage associated with a transistor of the pixel based at least in part on the image data. Furthermore, the processing circuitry is configured to adjust the image data to generate adjusted image data based at least in part on the predicted change in threshold voltage.
    Type: Grant
    Filed: May 7, 2020
    Date of Patent: May 11, 2021
    Assignee: Apple Inc.
    Inventors: Hei Kam, Junhua Tan, Wei H. Yao, Shihchang Chang, Derek K. Shaeffer, Chaohao Wang, Hyunwoo Nho, Yun Wang, Baris Cagdaser, Majid Gharghi, Yongjun Li, Aida Raquel Colon-Berrios, Mohammad Reza Esmaeili Rad, Hyunsoo Kim, Alex H. Pai, Hsin-Ying Chiu, Jiun-Jye Chang, Ching-Sang Chuang, Xin Lin
  • Patent number: 10943516
    Abstract: A method of adjusting a control signal to a component of an electronic display based on a temperature of the component, includes measuring current outputs of the component in response to applied gate voltages. The method also includes applying a mapping function to the current outputs to generate adapted current outputs, which are utilized to determine an intermediate value related to the temperature of the component. The intermediate value corresponds to a relationship between the applied gate voltages and the adapted current outputs. The intermediate value also enables the intermediate value to be substantially independent of hysteresis of the current outputs. The control signals to the component may be adjusted based at least in part on the determined intermediate value for the component.
    Type: Grant
    Filed: April 4, 2018
    Date of Patent: March 9, 2021
    Assignee: Apple Inc.
    Inventors: Derek K. Shaeffer, Baris Cagdaser
  • Patent number: 10923015
    Abstract: A display device may include a plurality of pixels that may display image data on a display. The display device may also include a circuit that may receive pixel data including a gray level for at least one pixel of the plurality of pixels. The circuit may then receive an emission clock signal using a clock circuit based on the pixel data, such that the emission clock signal may cause the at least one pixel to receive a current for an amount of time based on the gray level. The circuit may then gate off the clock circuit after the amount of time.
    Type: Grant
    Filed: September 20, 2017
    Date of Patent: February 16, 2021
    Assignee: Apple Inc.
    Inventors: Derek K. Shaeffer, Hopil Bae, Yafei Bi, Wei H. Yao, Xiaofeng Wang
  • Patent number: 10891884
    Abstract: Design-for-test (DFT) architectures, and methods of testing an array of chips, which may be identical, are described. In an embodiment, a comparison circuit includes a plurality of comparators to compare scan-data out (SDO) data streams with an expected data stream and transmit a compared data stream that is indicated of whether or not an error exists in any of the SDO data streams.
    Type: Grant
    Filed: February 21, 2019
    Date of Patent: January 12, 2021
    Assignee: Apple Inc.
    Inventors: Bo Yang, Xiang Lu, Andrew J. Copperhall, Henry C. Jen, Karthik Manickam, Sagar Nataraj, Shriram Vijayakumar, Derek K. Shaeffer
  • Patent number: 10891882
    Abstract: The present techniques are capable of identifying and pinpointing defective microdrivers and/or row/column drivers either before or after any ?LEDs have been placed on the display. Using the architectures described herein, test data may be delivered in a parallel fashion to the drivers from support circuitry, such as a timing controller and/or a main board, and outputs based on the test data may be similarly delivered back to the support circuitry do determine which drivers are defective. This yields access to the output of every microdriver and row drier, thus enabling the identification of specific defective elements.
    Type: Grant
    Filed: March 2, 2018
    Date of Patent: January 12, 2021
    Assignee: Apple Inc.
    Inventors: Mahdi Farrokh Baroughi, Mohammad B. Vahid Far, Xiang Lu, Bo Yang, Derek K. Shaeffer, Henry C. Jen, Hopil Bae