Patents by Inventor Derek Kita

Derek Kita has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11885677
    Abstract: We disclose an on-chip photonic spectroscopy system capable of dramatically improving the signal-to-noise ratio (SNR), dynamic range, and reconstruction quality of Fourier transform spectrometers. Secondly, we disclose a system of components that makes up a complete on-chip RF spectrum analyzer with low-cost and high-performance.
    Type: Grant
    Filed: April 12, 2021
    Date of Patent: January 30, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Derek Kita, Carlos Andres Rios Ocampo, Juejun Hu
  • Patent number: 11885684
    Abstract: A method of performing Raman spectroscopy can include guiding a Raman pump beam with an optical fiber, where the Raman pump beam inducing fluorescence in the optical fiber. The beam and the fluorescence are coupled to a photonic integrated circuit (PIC) via the fiber. The beam is used to excite a sample in optical communication with the PIC via evanescent coupling and induces Raman scattering in the sample. The Raman scattering is collected via the PIC, and the Raman pump beam as well as the fluorescence is filtered out from the Raman scattering via the PIC.
    Type: Grant
    Filed: April 28, 2021
    Date of Patent: January 30, 2024
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Derek Kita, Jerome Michon
  • Patent number: 11564565
    Abstract: An optical coherence tomography (OCT) engine includes a digital Fourier-Transform (dFT) spectrometer, a tunable delay line, and a high-speed optical phased array (OPA) scanner integrated onto a single chip. The broadband dFT spectrometer offers superior signal-to-noise ratio (SNR) and fine axial resolution; the tunable delay line ensures large imaging depth by circumventing sensitivity roll-off; and the OPA can scan the beams at GHz rates without moving parts. Unlike conventional spectrometers, the dFT spectrometer employs an optical switch network to retrieve spectral information in an exponentially scaling fashion—its performance doubles with every new optical switch added to the network. Moreover, it also benefits from the Fellgett's advantage, which provide a significant SNR edge over conventional spectrometers. The tunable delay line balances the path length difference between the reference and sample arms, avoiding any need to sample high-frequency spectral fringes.
    Type: Grant
    Filed: February 2, 2021
    Date of Patent: January 31, 2023
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Derek Kita, Carlos Andres Rios Ocampo
  • Patent number: 11313725
    Abstract: State-of-the-art portable Raman spectrometers use discrete free-space optical components that must be aligned well and that don't tolerate vibrations well. Conversely, the inventive spectrometers are made with monolithic photonic integration to fabricate some or all optical components on one or more planar substrates. Photonic integration enables dense integration of components, eliminates manual alignment and individual component assembly, and yields superior mechanical stability and resistance to shock or vibration. These features make inventive spectrometers especially suitable for use in high-performance portable or wearable sensors. They also yield significant performance advantages, including a large (e.g., 10,000-fold) increase in Raman scattering efficiency resulting from on-chip interaction of the tightly localized optical mode and the analyte and a large enhancement in spectral resolution and sensitivity resulting from the integration of an on-chip Fourier-transform spectrometer.
    Type: Grant
    Filed: July 14, 2020
    Date of Patent: April 26, 2022
    Assignee: Massachusetts Institute of Technology
    Inventors: Tian Gu, Derek Kita, Juejun Hu
  • Publication number: 20210307603
    Abstract: An optical coherence tomography (OCT) engine includes a digital Fourier-Transform (dFT) spectrometer, a tunable delay line, and a high-speed optical phased array (OPA) scanner integrated onto a single chip. The broadband dFT spectrometer offers superior signal-to-noise ratio (SNR) and fine axial resolution; the tunable delay line ensures large imaging depth by circumventing sensitivity roll-off; and the OPA can scan the beams at GHz rates without moving parts. Unlike conventional spectrometers, the dFT spectrometer employs an optical switch network to retrieve spectral information in an exponentially scaling fashion—its performance doubles with every new optical switch added to the network. Moreover, it also benefits from the Fellgett's advantage, which provide a significant SNR edge over conventional spectrometers. The tunable delay line balances the path length difference between the reference and sample arms, avoiding any need to sample high-frequency spectral fringes.
    Type: Application
    Filed: February 2, 2021
    Publication date: October 7, 2021
    Inventors: Juejun Hu, Tian GU, Derek Kita, Carlos Andres Rios Ocampo
  • Publication number: 20210262860
    Abstract: A method of performing Raman spectroscopy can include guiding a Raman pump beam with an optical fiber, where the Raman pump beam inducing fluorescence in the optical fiber. The beam and the fluorescence are coupled to a photonic integrated circuit (PIC) via the fiber. The beam is used to excite a sample in optical communication with the PIC via evanescent coupling and induces Raman scattering in the sample. The Raman scattering is collected via the PIC, and the Raman pump beam as well as the fluorescence is filtered out from the Raman scattering via the PIC.
    Type: Application
    Filed: April 28, 2021
    Publication date: August 26, 2021
    Inventors: Juejun Hu, Derek Kita, Jerome Michon
  • Publication number: 20210239526
    Abstract: We disclose an on-chip photonic spectroscopy system capable of dramatically improving the signal-to-noise ratio (SNR), dynamic range, and reconstruction quality of Fourier transform spectrometers. Secondly, we disclose a system of components that makes up a complete on-chip RF spectrum analyzer with low-cost and high-performance.
    Type: Application
    Filed: April 12, 2021
    Publication date: August 5, 2021
    Applicant: Massachusetts Institute of Technology
    Inventors: Derek Kita, Carlos Andres Rios Ocampo, Juejun Hu
  • Patent number: 11041759
    Abstract: A method of performing Raman spectroscopy can include guiding a Raman pump beam with an optical fiber, where the Raman pump beam inducing fluorescence in the optical fiber. The beam and the fluorescence are coupled to a photonic integrated circuit (PIC) via the fiber. The beam is used to excite a sample in optical communication with the PIC via evanescent coupling and induces Raman scattering in the sample. The Raman scattering is collected via the PIC, and the Raman pump beam as well as the fluorescence is filtered out from the Raman scattering via the PIC.
    Type: Grant
    Filed: June 28, 2019
    Date of Patent: June 22, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Derek Kita, Jerome Michon
  • Patent number: 10983003
    Abstract: We disclose an on-chip photonic spectroscopy system capable of dramatically improving the signal-to-noise ratio (SNR), dynamic range, and reconstruction quality of Fourier transform spectrometers. Secondly, we disclose a system of components that makes up a complete on-chip RF spectrum analyzer with low-cost and high-performance.
    Type: Grant
    Filed: December 11, 2019
    Date of Patent: April 20, 2021
    Assignee: Massachusetts Institute of Technology
    Inventors: Derek Kita, Carlos Andres Rios Ocampo, Juejun Hu
  • Publication number: 20210025756
    Abstract: State-of-the-art portable Raman spectrometers use discrete free-space optical components that must be aligned well and that don't tolerate vibrations well. Conversely, the inventive spectrometers are made with monolithic photonic integration to fabricate some or all optical components on one or more planar substrates. Photonic integration enables dense integration of components, eliminates manual alignment and individual component assembly, and yields superior mechanical stability and resistance to shock or vibration. These features make inventive spectrometers especially suitable for use in high-performance portable or wearable sensors. They also yield significant performance advantages, including a large (e.g., 10,000-fold) increase in Raman scattering efficiency resulting from on-chip interaction of the tightly localized optical mode and the analyte and a large enhancement in spectral resolution and sensitivity resulting from the integration of an on-chip Fourier-transform spectrometer.
    Type: Application
    Filed: July 14, 2020
    Publication date: January 28, 2021
    Inventors: Tian GU, Derek Kita, Juejun HU
  • Patent number: 10852190
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Grant
    Filed: July 9, 2019
    Date of Patent: December 1, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Kita, Anuradha M. Agarwal
  • Publication number: 20200256728
    Abstract: We disclose an on-chip photonic spectroscopy system capable of dramatically improving the signal-to-noise ratio (SNR), dynamic range, and reconstruction quality of Fourier transform spectrometers. Secondly, we disclose a system of components that makes up a complete on-chip RF spectrum analyzer with low-cost and high-performance.
    Type: Application
    Filed: December 11, 2019
    Publication date: August 13, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Derek Kita, Carlos Andres Rios Ocampo, Juejun Hu
  • Patent number: 10571335
    Abstract: An apparatus for generating a spectral image includes a filter to receive incident light. The filter has a variable refractive index. The apparatus also includes a modulator, operably coupled to the filter, to modulate the variable refractive index of the filter so as to generate a plurality of optical patterns from the incident light. The plurality of optical patterns represents the spectral image and each optical pattern in the plurality of optical patterns corresponds to a different modulation of the variable refractive index. The apparatus further includes a detector, in optical communication with the filter, to detect the plurality of optical patterns.
    Type: Grant
    Filed: February 14, 2019
    Date of Patent: February 25, 2020
    Assignee: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Tian Gu, Kazumi Wada, Anuradha Murthy Agarwal, Lionel Cooper Kimerling, Derek Kita, Junying Li, Fleur Jacolien Fok
  • Publication number: 20200003619
    Abstract: A method of performing Raman spectroscopy can include guiding a Raman pump beam with an optical fiber, where the Raman pump beam inducing fluorescence in the optical fiber. The beam and the fluorescence are coupled to a photonic integrated circuit (PIC) via the fiber. The beam is used to excite a sample in optical communication with the PIC via evanescent coupling and induces Raman scattering in the sample. The Raman scattering is collected via the PIC, and the Raman pump beam as well as the fluorescence is filtered out from the Raman scattering via the PIC.
    Type: Application
    Filed: June 28, 2019
    Publication date: January 2, 2020
    Applicant: Massachusetts Institute of Technology
    Inventors: Juejun Hu, Derek Kita, Jerome Michon
  • Publication number: 20190331529
    Abstract: A spectrometer includes an interferometer having a first interference arm and a second interference arm to produce interference patterns from incident light. At least one of the interference arms includes a series of cascaded optical switches connected by two (or more) waveguides of different lengths. Each optical switch directs the incident light into one waveguide or another, thereby changing the optical path length difference between the first interference arm and the second interference arm. This approach can be extended to multi-mode incident light by placing parallel interferometers together, each of which performs spectroscopy of one single mode in the multi-mode incident light. To maintain the compactness of the spectrometer, adjacent interferometers can share one interference arm.
    Type: Application
    Filed: July 9, 2019
    Publication date: October 31, 2019
    Inventors: Juejun Hu, Tian Gu, Hongtao Lin, Derek Kita, Anuradha M. Agarwal
  • Publication number: 20190285473
    Abstract: An apparatus for generating a spectral image includes a filter to receive incident light. The filter has a variable refractive index. The apparatus also includes a modulator, operably coupled to the filter, to modulate the variable refractive index of the filter so as to generate a plurality of optical patterns from the incident light. The plurality of optical patterns represents the spectral image and each optical pattern in the plurality of optical patterns corresponds to a different modulation of the variable refractive index. The apparatus further includes a detector, in optical communication with the filter, to detect the plurality of optical patterns.
    Type: Application
    Filed: February 14, 2019
    Publication date: September 19, 2019
    Inventors: Juejun Hu, Tian Gu, Kazumi Wada, Anuradha Murthy Agarwal, Lionel Cooper Kimerling, Derek Kita, Junying Li, Fleur Jacolien Fok