Patents by Inventor Derek Rinderknecht

Derek Rinderknecht has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20210386309
    Abstract: Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
    Type: Application
    Filed: January 13, 2021
    Publication date: December 16, 2021
    Inventors: Derek Rinderknecht, Niema M. Pahlevan, Peyman Tavallali, Morteza Gharib
  • Patent number: 10918291
    Abstract: Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
    Type: Grant
    Filed: November 29, 2017
    Date of Patent: February 16, 2021
    Assignee: California Institute of Technology
    Inventors: Derek Rinderknecht, Niema Pahlevan, Peyman Tavallali, Morteza Gharib
  • Publication number: 20190167131
    Abstract: Devices, systems, and methods are described for acquiring heart sound timing content to enhance pulse waveform analysis.
    Type: Application
    Filed: February 11, 2019
    Publication date: June 6, 2019
    Inventors: Derek Rinderknecht, Morteza Gharib, Niema Pahlevan, Peyman Tavallali
  • Publication number: 20180206747
    Abstract: Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
    Type: Application
    Filed: November 29, 2017
    Publication date: July 26, 2018
    Inventors: Derek Rinderknecht, Niema Pahlevan, Peyman Tavallali, Morteza Gharib
  • Publication number: 20180020955
    Abstract: Hardware and software methodology are described for non-invasively monitoring cardiac health. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. Together with associated notch timing, heart rate and blood pressure values left ventricle ejection fraction and/or stroke volume can be determination.
    Type: Application
    Filed: May 31, 2017
    Publication date: January 25, 2018
    Inventors: Niema Pahlevan, Peyman Tavallali, Derek Rinderknecht, Morteza Gharib
  • Publication number: 20170020400
    Abstract: Devices, systems, and methods are described for acquiring heart sound timing content to enhance pulse waveform analysis.
    Type: Application
    Filed: June 30, 2016
    Publication date: January 26, 2017
    Inventors: Derek Rinderknecht, Morteza Gharib, Niema Pahlevan, Peyman Tavallali
  • Publication number: 20170020414
    Abstract: Hardware and software methodology are described for non-invasively monitoring cardiac health. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. Together with associated notch timing, heart rate and blood pressure values left ventricle ejection fraction and/or stroke volume can be determination.
    Type: Application
    Filed: September 28, 2016
    Publication date: January 26, 2017
    Inventors: Niema Pahlevan, Peyman Tavallali, Derek Rinderknecht, Morteza Gharib
  • Patent number: 9484543
    Abstract: A method of fabricating optical energy collection and conversion devices using carbon nanotubes (CNTs), and a method of anchoring CNT's into thin polymeric layers is disclosed. The basic method comprises an initial act of surrounding a plurality of substantially aligned nanostructures within at least one fluid layer of substantially uniform thickness such that a first end of the plurality of nanostructures protrudes from the fluid layer. Next, the fluid layer is altered to form an anchoring layer, thereby fastening the nanostructures within the primary anchoring layer with the first ends of the nanostructures protruding from a first surface of the primary anchoring layer. Finally, a portion of the anchoring layer is selectively removed such that a second end of the nanostructures is exposed and protrudes from the anchoring layer. The resulting product is an optically absorbent composite material having aligned nanostructures protruding from both sides of an anchoring layer.
    Type: Grant
    Filed: May 11, 2011
    Date of Patent: November 1, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Elijah Bodhi Sansom, Morteza Gharib, Derek Rinderknecht
  • Patent number: 9480406
    Abstract: Hardware and software methodology are described for non-invasively monitoring cardiac health. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. Together with associated notch timing, heart rate and blood pressure values left ventricle ejection fraction and/or stroke volume can be determination.
    Type: Grant
    Filed: October 17, 2014
    Date of Patent: November 1, 2016
    Assignee: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Niema Pahlevan, Peyman Tavallali, Derek Rinderknecht, Morteza Gharib
  • Publication number: 20160135697
    Abstract: Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
    Type: Application
    Filed: January 26, 2016
    Publication date: May 19, 2016
    Inventors: Derek Rinderknecht, Niema Pahlevan, Peyman Tavallali, Morteza Gharib
  • Publication number: 20150297105
    Abstract: Systems and methods are provided for extracting hemodynamic information, optionally employing portable electronic devices with optional User Interface (UI) features for system implementation. The systems and methods may be employed for acquiring hemodynamic signals and associated electrophysiological data and/or analyzing the former or both in combination to yield useful physiological indicia or results. Such hardware and software is advantageously used for non-invasively monitoring cardiac health.
    Type: Application
    Filed: January 20, 2015
    Publication date: October 22, 2015
    Inventors: Niema Pahlevan, Derek Rinderknecht, Peyman Tavallali, Morteza Gharib
  • Publication number: 20150112219
    Abstract: Hardware and software methodology are described for non-invasively monitoring cardiac health. Hemodynamic waveforms variously acquired for a subject are analyzed to calculate or approximate intrinsic frequencies in two domains in two domains across the Dicrotic Notch. Together with associated notch timing, heart rate and blood pressure values left ventricle ejection fraction and/or stroke volume can be determination.
    Type: Application
    Filed: October 17, 2014
    Publication date: April 23, 2015
    Applicant: CALIFORNIA INSTITUTE OF TECHNOLOGY
    Inventors: Niema Pahlevan, Peyman Tavallali, Derek Rinderknecht, Morteza Gharib
  • Publication number: 20150094697
    Abstract: Described herein are systems, devices, and methods for the delivery of substances to, or the sampling of substances from, a patient using a portable and preferably implantable device. The substances introduced to and/or taken from the patient are preferably fluidic and are driven by a miniature pump, such as a microimpedance pump. A number of design variations are explicitly and implicitly described, such as the use of multiple pumps and multiple reservoirs for containing medicaments. Methods of manufacture of these systems and devices are also described, for instance, using molding, micromachining, or lithographic processes.
    Type: Application
    Filed: December 5, 2014
    Publication date: April 2, 2015
    Inventors: Derek Rinderknecht, Hesham Azizgolshani, Morteza Gharib
  • Publication number: 20150064396
    Abstract: Methods for fastening nanoscale structures within an anchoring structure to form a nanostructure composite and nanostructure composites formed therefrom. A primary fluid layer is formed on an anchoring substrate. Nanostructures are provided on an initial substrate, the nanostructures having a defined height and orientation with respect to the initial substrate. The nanostructures are introduced to a desired depth in the primary fluid layer, such that the orientation of the nanostructures relative to the growth substrate is substantially maintained. The primary fluid layer comprises one or more fluid layers. Ones of multiple fluid layers are selected such that when altered to form an anchoring structure, a portion of the anchoring structure can be removed, permitting exposure of at least a portion of the nanostructures from the anchoring structure in which they are affixed. The growth substrate is removed. Ends or other parts of nanostructures may be exposed from the anchoring structure.
    Type: Application
    Filed: September 11, 2014
    Publication date: March 5, 2015
    Inventors: Elijah Bodhi Sansom, Derek Rinderknecht, Morteza Gharib
  • Patent number: 8945448
    Abstract: Described herein are systems, devices, and methods for the delivery of substances to, or the sampling of substances from, a patient using a portable and preferably implantable device. The substances introduced to and/or taken from the patient are preferably fluidic and are driven by a miniature pump, such as a microimpedance pump. A number of design variations are explicitly and implicitly described, such as the use of multiple pumps and multiple reservoirs for containing medicaments. Methods of manufacture of these systems and devices are also described, for instance, using molding, micromachining, or lithographic processes.
    Type: Grant
    Filed: June 7, 2012
    Date of Patent: February 3, 2015
    Assignee: California Institute of Technology
    Inventors: Derek Rinderknecht, Hasham Azizgolshani, Mortez Gharib
  • Patent number: 8846143
    Abstract: Methods for fastening nanoscale structures within an anchoring structure to form a nanostructure composite and nanostructure composites formed therefrom. A primary fluid layer is formed on an anchoring substrate. Nanostructures are provided on an initial substrate, the nanostructures having a defined height and orientation with respect to the initial substrate. The nanostructures are introduced to a desired depth in the primary fluid layer, such that the orientation of the nanostructures relative to the growth substrate is substantially maintained. The primary fluid layer comprises one or more fluid layers. Ones of multiple fluid layers are selected such that when altered to form an anchoring structure, a portion of the anchoring structure can be removed, permitting exposure of at least a portion of the nanostructures from the anchoring structure in which they are affixed. The growth substrate is removed. Ends or other parts of nanostructures may be exposed from the anchoring structure.
    Type: Grant
    Filed: May 18, 2011
    Date of Patent: September 30, 2014
    Assignee: California Institute of Technology
    Inventors: Elijah Bodhi Sansom, Derek Rinderknecht, Morteza Gharib
  • Publication number: 20130041319
    Abstract: Described herein are systems, devices, and methods for the delivery of substances to, or the sampling of substances from, a patient using a portable and preferably implantable device. The substances introduced to and/or taken from the patient are preferably fluidic and are driven by a miniature pump, such as a microimpedance pump. A number of design variations are explicitly and implicitly described, such as the use of multiple pumps and multiple reservoirs for containing medicaments. Methods of manufacture of these systems and devices are also described, for instance, using molding, micromachining, or lithographic processes.
    Type: Application
    Filed: June 7, 2012
    Publication date: February 14, 2013
    Inventors: Derek Rinderknecht, Hasham Azizgolshani, Mortez Gharib
  • Patent number: 8197234
    Abstract: An electromagnetic actuator for a microfluidic pump of the type that causes periodic pinching and releasing against the walls of a fluidic channel, e.g., a tube. At least one permanent magnet is placed against the walls of the fluidic channel, and located in an area with magnetic fields, produced by coils that are radially symmetric to the channel. The permanent magnet is cause to press and release against the wall of the fluid channel to cause a fluid flow through the channel.
    Type: Grant
    Filed: May 24, 2005
    Date of Patent: June 12, 2012
    Assignee: California Institute of Technology
    Inventors: Morteza Gharib, Derek Rinderknecht, Mladen Barbic
  • Publication number: 20120021164
    Abstract: Methods for fastening nanoscale structures within an anchoring structure to form a nanostructure composite and nanostructure composites formed therefrom. A primary fluid layer is formed on an anchoring substrate. Nanostructures are provided on an initial substrate, the nanostructures having a defined height and orientation with respect to the initial substrate. The nanostructures are introduced to a desired depth in the primary fluid layer, such that the orientation of the nanostructures relative to the growth substrate is substantially maintained. The primary fluid layer comprises one or more fluid layers. Ones of multiple fluid layers are selected such that when altered to form an anchoring structure, a portion of the anchoring structure can be removed, permitting exposure of at least a portion of the nanostructures from the anchoring structure in which they are affixed. The growth substrate is removed. Ends or other parts of nanostructures may be exposed from the anchoring structure.
    Type: Application
    Filed: May 18, 2011
    Publication date: January 26, 2012
    Inventors: Elijah Bodhi Sansom, Derek Rinderknecht, Morteza Gharib
  • Patent number: 8092365
    Abstract: A multilayered impedance pump is formed by an inner tube and an outer tube which have different mechanical characteristics. The outer tube is relatively stiff, and can be used for a structural material. The inner tube is excitable, and a gel is placed between the inner and outer tube. The actuator actuates the gel to cause pressure waves along the inner tube.
    Type: Grant
    Filed: January 8, 2007
    Date of Patent: January 10, 2012
    Assignee: California Institute of Technology
    Inventors: Derek Rinderknecht, Morteza Gharib, Laurence Loumes, Arian Soroush Forouhar, Anna Hickerson