Patents by Inventor Derek Stein

Derek Stein has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8969091
    Abstract: The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.
    Type: Grant
    Filed: February 13, 2013
    Date of Patent: March 3, 2015
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Jiali Li, Derek Stein, Marc H. Gershow
  • Patent number: 8394640
    Abstract: The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.
    Type: Grant
    Filed: December 6, 2010
    Date of Patent: March 12, 2013
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Jiali Li, Derek Stein, Marc H. Gershow
  • Publication number: 20110159601
    Abstract: The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.
    Type: Application
    Filed: December 6, 2010
    Publication date: June 30, 2011
    Inventors: Jene A. Golovchenko, Jiali Li, Derek Stein, Marc H. Gershow
  • Patent number: 7846738
    Abstract: The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.
    Type: Grant
    Filed: August 16, 2004
    Date of Patent: December 7, 2010
    Assignee: President and Fellows of Harvard College
    Inventors: Jene A. Golovchenko, Jiali Li, Derek Stein, Marc H. Gershow
  • Publication number: 20070172386
    Abstract: A solid state nanopore device including two or more materials and a method for fabricating the same. The device includes a solid state insulating membrane having an exposed surface, a conductive material disposed on at least a portion of the exposed surface of the solid state membrane, and a nanopore penetrating an area of the conductive material and at least a portion of the solid state membrane. During fabrication a conductive material is applied on a portion of a solid state membrane surface, and a nanopore of a first diameter is formed. When the surface is exposed to an ion beam, material from the membrane and conductive material flows to reduce the diameter of the nanopore. A method for evaluating a polymer molecule using the solid state nanopore device is also described. The device is contacted with the polymer molecule and the molecule is passed through the nanopore, allowing each monomer of the polymer molecule to be monitored.
    Type: Application
    Filed: February 14, 2003
    Publication date: July 26, 2007
    Inventors: Jiali Li, Derek Stein, Gregor Schurmann, Gavin King, Jene Golovchenko, Daniel Branton, Michael Aziz
  • Publication number: 20060230818
    Abstract: Planar resonant tunneling sensor devices and methods for using the same are provided. The subject devices include first and second electrodes present on a surface of a planar substrate and separated from each other by a nanodimensioned gap. The devices also include a first member for holding a sample, and a second member for moving the first member and planar resonant tunneling electrode relative to each other. Also provided are methods of fabricating such a device and methods of using such a device for improved detection and characterization of a sample.
    Type: Application
    Filed: April 14, 2005
    Publication date: October 19, 2006
    Inventors: Phillip Barth, Derek Stein, Curt Flory, Rick Pittaro, Daniel Roitman
  • Patent number: 7114378
    Abstract: Planar resonant tunneling sensor devices and methods for using the same are provided. The subject devices include first and second electrodes present on a surface of a planar substrate and separated from each other by a nanodimensioned gap. The devices also include a first member for holding a sample, and a second member for moving the first member and planar resonant tunneling electrode relative to each other. Also provided are methods of fabricating such a device and methods of using such a device for improved detection and characterization of a sample.
    Type: Grant
    Filed: April 14, 2005
    Date of Patent: October 3, 2006
    Assignee: Agilent Technologies, Inc.
    Inventors: Philip W. Barth, Derek Stein, Curt Flory, Rick Pittaro, Daniel Roitman
  • Publication number: 20060003458
    Abstract: The invention features methods for evaluating the conformation of a polymer, for example, for determining the conformational distribution of a plurality of polymers and to detect binding or denaturation events. The methods employ a nanopore which the polymer, e.g., a nucleic acid, traverses. As the polymer traverses the nanopore, measurements of transport properties of the nanopore yield data on the conformation of the polymer.
    Type: Application
    Filed: August 16, 2004
    Publication date: January 5, 2006
    Inventors: Jene Golovchenko, Jiali Li, Derek Stein, Marc Gershow
  • Publication number: 20050126905
    Abstract: The invention provides a method for controlled fabrication of a solid state structural feature. In the method, a solid state structure is provided and the structure is exposed to an ion beam, under fabrication process conditions for producing the structural feature. A physical detection species is directed toward a designated structure location, and the rate at which the detection species proceeds from the designated structure location is measured. Detection species rate measurements are fit to a mathematical model, and the fabrication process conditions are controlled, based on the fitted detection species rate measurements, to fabricate the structural feature.
    Type: Application
    Filed: October 7, 2004
    Publication date: June 16, 2005
    Applicants: President and Fellows of Harvard College, Agilent Technologies, Inc.
    Inventors: Jene Golovchenko, Derek Stein, George Yefchak, Richard Pittaro, Curt Flory
  • Publication number: 20050006224
    Abstract: For controlling a physical dimension of a solid state structural feature, a solid state structure is provided, having a surface and having a structural feature. The structure is exposed to a first periodic flux of ions having a first exposure duty cycle characterized by a first ion exposure duration and a first nonexposure duration for the first duty cycle, and then at a second periodic flux of ions having a second exposure duty cycle characterized by a second ion exposure duration and a second nonexposure duration that is greater than the first nonexposure duration, for the second duty cycle, to cause transport, within the structure including the structure surface, of material of the structure to the structural feature in response to the ion flux exposure to change at least one physical dimension of the feature substantially by locally adding material of the structure to the feature.
    Type: Application
    Filed: October 28, 2003
    Publication date: January 13, 2005
    Applicant: President and Fellows of Harvard College
    Inventors: Jene Golovchenko, Derek Stein, Jiali Li