Patents by Inventor Derek Witty

Derek Witty has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8445075
    Abstract: Methods of processing films on substrates are provided. In one aspect, the methods comprise treating a patterned low dielectric constant film after a photoresist is removed from the film by depositing a thin layer comprising silicon, carbon, and optionally oxygen and/or nitrogen on the film. The thin layer provides a carbon-rich, hydrophobic surface for the patterned low dielectric constant film. The thin layer also protects the low dielectric constant film from subsequent wet cleaning processes and penetration by precursors for layers that are subsequently deposited on the low dielectric constant film.
    Type: Grant
    Filed: December 22, 2010
    Date of Patent: May 21, 2013
    Assignee: Applied Materials, Inc.
    Inventors: Huiwen Xu, Mei-Yee Shek, Li-Qun Xia, Amir Al-Bayati, Derek Witty, Hichem M'Saad
  • Publication number: 20110092077
    Abstract: Methods of processing films on substrates are provided. In one aspect, the methods comprise treating a patterned low dielectric constant film after a photoresist is removed form the film by depositing a thin layer comprising silicon, carbon, and optionally oxygen and/or nitrogen on the film. The thin layer provides a carbon-rich, hydrophobic surface for the patterned low dielectric constant film. The thin layer also protects the low dielectric constant film from subsequent wet cleaning processes and penetration by precursors for layers that are subsequently deposited on the low dielectric constant film.
    Type: Application
    Filed: December 22, 2010
    Publication date: April 21, 2011
    Inventors: HUIWEN XU, MEI-YEE SHEK, LI-QUN XIA, AMIR AL-BAYATI, DEREK WITTY, HICHEM M'SAAD
  • Patent number: 7425716
    Abstract: Embodiments in accordance with the present invention relate to a number of techniques, which may be applied alone or in combination, to reduce charge damage of substrates exposed to electron beam radiation. In one embodiment, charge damage is reduced by establishing a robust electrical connection between the exposed substrate and ground. In another embodiment, charge damage is reduced by modifying the sequence of steps for activating and deactivating the electron beam source to reduce the accumulation of charge on the substrate. In still another embodiment, a plasma is struck in the chamber containing the e-beam treated substrate, thereby removing accumulated charge from the substrate. In a further embodiment of the present invention, the voltage of the anode of the e-beam source is reduced in magnitude to account for differences in electron conversion efficiency exhibited by different cathode materials.
    Type: Grant
    Filed: April 27, 2006
    Date of Patent: September 16, 2008
    Assignee: Applied Materials, Inc.
    Inventors: Alexandros T. Demos, Khaled A. Elsheref, Yuri Trachuk, Tom K. Cho, Girish A. Dixit, Hichem M'Saad, Derek Witty
  • Publication number: 20080099920
    Abstract: Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
    Type: Application
    Filed: October 22, 2007
    Publication date: May 1, 2008
    Applicant: APPLIED MATERIALS, INC. A Delaware corporation
    Inventors: Francimar Schmitt, Yi Zheng, Kang Yim, Sang Ahn, Lester D'Cruz, Dustin Ho, Alexandros Demos, Li-Qun Xia, Derek Witty, Hichem M'Saad
  • Publication number: 20080084650
    Abstract: The present invention generally provides methods and apparatus for monitoring and maintaining flatness of a substrate in a plasma reactor. Certain embodiments of the present invention provide a method for processing a substrate comprising positioning the substrate on an electrostatic chuck, applying an RF power between the an electrode in the electrostatic chuck and a counter electrode positioned parallel to the electrostatic chuck, applying a DC bias to the electrode in the electrostatic chuck to clamp the substrate on the electrostatic chuck, and measuring an imaginary impedance of the electrostatic chuck.
    Type: Application
    Filed: October 3, 2007
    Publication date: April 10, 2008
    Inventors: Ganesh Balasubramanian, Amit Bansal, Eller Juco, Mohamad Ayoub, Hyung-Joon Kim, Karthik Janakiraman, Sudha Rathi, Deenesh Padhi, Martin Seamons, Visweswaren Sivaramakrishnan, Bok Kim, Amir Al-Bayati, Derek Witty, Hichem M'Saad, Anton Baryshnikov, Chiu Chan, Shuang Liu
  • Publication number: 20080020591
    Abstract: Stress of a silicon nitride layer may be enhanced by deposition at higher temperatures. Employing an apparatus that allows heating of a substrate to substantially greater than 400° C. (for example a heater made from ceramic rather than aluminum), the silicon nitride film as-deposited may exhibit enhanced stress allowing for improved performance of the underlying MOS transistor device. In accordance with alternative embodiments, a deposited silicon nitride film is exposed to curing with ultraviolet (UV) radiation at an elevated temperature, thereby helping remove hydrogen from the film and increasing film stress. In accordance with still other embodiments, a silicon nitride film is formed utilizing an integrated process employing a number of deposition/curing cycles to preserve integrity of the film at the sharp corner of the underlying raised feature. Adhesion between successive layers may be promoted by inclusion of a post-UV cure plasma treatment in each cycle.
    Type: Application
    Filed: June 13, 2007
    Publication date: January 24, 2008
    Applicant: Applied Materials, Inc.
    Inventors: Mihaela Balseanu, Victor Nguyen, Li-Qun Xia, Derek Witty, Hichem M'Saad, Mei-Yee Shek, Isabelita Roflox
  • Publication number: 20070287301
    Abstract: Methods of processing films on substrates are provided. In one aspect, the methods comprise treating a patterned low dielectric constant film after a photoresist is removed form the film by depositing a thin layer comprising silicon, carbon, and optionally oxygen and/or nitrogen on the film. The thin layer provides a carbon-rich, hydrophobic surface for the patterned low dielectric constant film. The thin layer also protects the low dielectric constant film from subsequent wet cleaning processes and penetration by precursors for layers that are subsequently deposited on the low dielectric constant film.
    Type: Application
    Filed: March 30, 2007
    Publication date: December 13, 2007
    Inventors: Huiwen Xu, Mei-Yee Shek, Li-Qun Xia, Amir Al-Bayati, Derek Witty, Hichem M'Saad
  • Publication number: 20070079753
    Abstract: A method of forming a graded dielectric layer on an underlying layer including flowing a mixture of a silicon-carbon containing gas, an oxygen containing gas and a carrier gas through a showerhead comprising a blocking plate and a faceplate to form an oxide rich portion of the graded dielectric layer, where the silicon-carbon containing gas has an initial flow rate, flowing the silicon-carbon containing gas at a first intermediate flow rate for about 0.5 seconds or longer, where the first intermediate flow rate is higher than the initial flow rate, and flowing the silicon-carbon containing gas at a fastest flow rate higher than the first intermediate flow rate to form a carbon rich portion of the graded dielectric layer.
    Type: Application
    Filed: December 8, 2006
    Publication date: April 12, 2007
    Applicant: Applied Materials, Inc.
    Inventors: Deenesh Padhi, Sohyun Park, Ganesh Balasubramanian, Juan Rocha-Alvarez, Li-Qun Xia, Derek Witty, Hichem M'Saad
  • Publication number: 20060192150
    Abstract: Embodiments in accordance with the present invention relate to a number of techniques, which may be applied alone or in combination, to reduce charge damage of substrates exposed to electron beam radiation. In one embodiment, charge damage is reduced by establishing a robust electrical connection between the exposed substrate and ground. In another embodiment, charge damage is reduced by modifying the sequence of steps for activating and deactivating the electron beam source to reduce the accumulation of charge on the substrate. In still another embodiment, a plasma is struck in the chamber containing the e-beam treated substrate, thereby removing accumulated charge from the substrate. In a further embodiment of the present invention, the voltage of the anode of the e-beam source is reduced in magnitude to account for differences in electron conversion efficiency exhibited by different cathode materials.
    Type: Application
    Filed: April 27, 2006
    Publication date: August 31, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Alexandros Demos, Khaled Elsheref, Yuri Trachuk, Tom Cho, Girish Dixit, Hichem M'Saad, Derek Witty
  • Publication number: 20060160374
    Abstract: Nano-porous low dielectric constant films are deposited utilizing materials having reactive by-products readily removed from a processing chamber by plasma cleaning. In accordance with one embodiment, an oxidizable silicon containing compound is reacted with an oxidizable non-silicon component having thermally labile groups, in a reactive oxygen ambient and in the presence of a plasma. The deposited silicon oxide film is annealed to form dispersed microscopic voids or pores that remain in the nano-porous silicon. Oxidizable non-silicon components with thermally labile groups that leave by-products readily removed from the chamber, include but are not limited to, limonene, carene, cymene, fenchone, vinyl acetate, methyl methacrylate, ethyl vinyl ether, tetrahydrofuran, furan, 2,5 Norbornadiene, cyclopentene, cyclopentene oxide, methyl cyclopentene, 2-cyclopentene-1-one, and 1-butene.
    Type: Application
    Filed: September 9, 2005
    Publication date: July 20, 2006
    Applicant: Applied Materials, Inc.
    Inventors: Dustin Ho, Derek Witty, Helen Armer, Hichem M'Saad
  • Publication number: 20060105106
    Abstract: A stressed film is formed on a substrate. The substrate is placed in a process zone and a plasma is formed of a process gas provided in the process zone, the process gas having silicon-containing gas and nitrogen-containing gas. A diluent gas such as nitrogen can also be added. The as-deposited stressed material can be exposed to ultraviolet radiation or electron beams to increase the stress value of the deposited material. In addition or in the alternative, a nitrogen plasma treatment can be used to increase the stress value of the material during deposition. Pulsed plasma methods to deposit stressed materials are also described.
    Type: Application
    Filed: February 11, 2005
    Publication date: May 18, 2006
    Inventors: Mihaela Balseanu, Kee Jung, Lihua Huang, Li-Qun Xia, Rongping Wang, Derek Witty, Lewis Stern, Martin Seamons, Hichem M'Saad, Michael Kwan
  • Publication number: 20060093756
    Abstract: A method for seasoning a deposition chamber wherein the chamber components and walls are densely coated with a material that does not contain carbon prior to deposition of an organo-silicon material on a substrate. An optional carbon-containing layer may be deposited therebetween. A chamber cleaning method using low energy plasma and low pressure to remove residue from internal chamber surfaces is provided and may be combined with the seasoning process.
    Type: Application
    Filed: November 3, 2004
    Publication date: May 4, 2006
    Inventors: Nagarajan Rajagopalan, Li-Qun Xia, Mihaela Balseanu, Thomas Nowak, Ranjana Shah, Huiwen Xu, Chad Peterson, Derek Witty, Hichem M'Saad
  • Publication number: 20060046520
    Abstract: A method of forming a graded dielectric layer on an underlying layer including flowing a mixture of a silicon-carbon containing gas, an oxygen containing gas and a carrier gas through a showerhead comprising a blocking plate and a faceplate to form an oxide rich portion of the graded dielectric layer, where the silicon-carbon containing gas has an initial flow rate, flowing the silicon-carbon containing gas at a first intermediate flow rate for about 0.5 seconds or longer, where the first intermediate flow rate is higher than the initial flow rate, and flowing the silicon-carbon containing gas at a fastest flow rate higher than the first intermediate flow rate to form a carbon rich portion of the graded dielectric layer.
    Type: Application
    Filed: September 1, 2004
    Publication date: March 2, 2006
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Deenesh Padhi, Sohyun Park, Ganesh Balasubramanian, Juan Rocha-Alvarez, Li-Qun Xia, Derek Witty, Hichem M'Saad
  • Publication number: 20050250348
    Abstract: A method of processing a substrate including depositing a low dielectric constant film comprising silicon, carbon, and oxygen on the substrate and depositing an oxide rich cap on the low dielectric constant film is provided. The low dielectric constant film is deposited from a gas mixture comprising an organosilicon compound and an oxidizing gas in the presence of RF power in a chamber. The RF power and a flow of the organosilicon compound and the oxidizing gas are continued in the chamber after the deposition of the low dielectric constant film at flow rates sufficient to deposit an oxide rich cap on the low dielectric constant film.
    Type: Application
    Filed: May 6, 2004
    Publication date: November 10, 2005
    Inventors: Li-Qun Xia, Huiwen Xu, Derek Witty, Hichem M'Saad, Dustin Ho, Juan Rocha-Alvarez
  • Publication number: 20050239293
    Abstract: A method of depositing a low dielectric constant film on a substrate and post-treating the low dielectric constant film is provided. The post-treatment includes rapidly heating the low dielectric constant film to a desired high temperature and then rapidly cooling the low dielectric constant film such that the low dielectric constant film is exposed to the desired high temperature for about five seconds or less. In one aspect, the post-treatment also includes exposing the low dielectric constant film to an electron beam treatment and/or UV radiation.
    Type: Application
    Filed: April 21, 2004
    Publication date: October 27, 2005
    Inventors: Zhenjiang Cui, Josephine Chang, Alexandros Demos, Reza Arghavani, Derek Witty, Helen Armer, Girish Dixit, Hichem M'Saad
  • Publication number: 20050233591
    Abstract: Adhesion of a porous low K film to an underlying barrier layer is improved by forming an intermediate layer lower in carbon content, and richer in silicon oxide, than the overlying porous low K film. This adhesion layer can be formed utilizing one of a number of techniques, alone or in combination. In one approach, the adhesion layer can be formed by introduction of a rich oxidizing gas such as O2/CO2/etc. to oxidize Si precursors immediately prior to deposition of the low K material. In another approach, thermally labile chemicals such as alpha-terpinene, cymene, and any other non-oxygen containing organics are removed prior to low K film deposition. In yet another approach, the hardware or processing parameters, such as the manner of introduction of the non-silicon containing component, may be modified to enable formation of an oxide interface prior to low K film deposition.
    Type: Application
    Filed: January 28, 2005
    Publication date: October 20, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Alexandros Demos, Derek Witty, Hichem M'Sadd, Sang Ahn, Lester D'Cruz, Khaled Elsheref, Zhenjiang Cui
  • Publication number: 20050230834
    Abstract: Embodiments in accordance with the present invention relate to multi-stage curing processes for chemical vapor deposited low K materials. In certain embodiments, a combination of electron beam irradiation and thermal exposure steps may be employed to control selective outgassing of porogens incorporated into the film, resulting in the formation of nanopores. In accordance with one specific embodiment, a low K layer resulting from reaction between a silicon-containing component and a non-silicon containing component featuring labile groups, may be cured by the initial application of thermal energy, followed by the application of radiation in the form of an electron beam.
    Type: Application
    Filed: March 21, 2005
    Publication date: October 20, 2005
    Applicant: Applied Materials, Inc.
    Inventors: Francimar Schmitt, Yi Zheng, Kang Yim, Sang Ahn, Lester D'Cruz, Dustin Ho, Alexandros Demos, Li-Qun Xia, Derek Witty, Hichem M'Saad
  • Publication number: 20050224722
    Abstract: Embodiments in accordance with the present invention relate to a number of techniques, which may be applied alone or in combination, to reduce charge damage of substrates exposed to electron beam radiation. In one embodiment, charge damage is reduced by establishing a robust electrical connection between the exposed substrate and ground. In another embodiment, charge damage is reduced by modifying the sequence of steps for activating and deactivating the electron beam source to reduce the accumulation of charge on the substrate. In still another embodiment, a plasma is struck in the chamber containing the e-beam treated substrate, thereby removing accumulated charge from the substrate. In a further embodiment of the present invention, the voltage of the anode of the e-beam source is reduced in magnitude to account for differences in electron conversion efficiency exhibited by different cathode materials.
    Type: Application
    Filed: December 1, 2004
    Publication date: October 13, 2005
    Applicant: APPLIED MATERIALS, INC.
    Inventors: Alexandros Demos, Khaled Elsheref, Yuri Trachuk, Tom Cho, Girish Dixit, Hichem M'Saad, Derek Witty