Patents by Inventor Derick G. Behrends

Derick G. Behrends has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10311966
    Abstract: A system and integrated circuits are provided for determining performance metrics over a plurality of cycles of an input signal using on-chip diagnostic circuitry. The system comprises a trigger generation module configured to generate a trigger signal, and diagnostic circuitry coupled with the trigger generation module. The diagnostic circuitry comprises a memory comprising a plurality of data lines, and a plurality of delay elements, each delay element of the plurality of delay elements connected between consecutive data lines of the plurality of data lines. The diagnostic circuitry is configured to receive at least one input signal, and write, upon receiving the trigger signal, values on the plurality of data lines to the memory, thereby acquiring samples of a plurality of cycles of the input signal.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: June 4, 2019
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, Jeffrey M. Scherer
  • Publication number: 20170242066
    Abstract: A system and integrated circuits are disclosed for determining performance metrics over a plurality of cycles of an input signal using on-chip diagnostic circuitry. The system comprises a trigger generation module configured to generate a trigger signal, and diagnostic circuitry coupled with the trigger generation module. The diagnostic circuitry comprises a memory comprising a plurality of data lines, and a plurality of delay elements, each delay element of the plurality of delay elements connected between consecutive data lines of the plurality of data lines. The diagnostic circuitry is configured to receive at least one input signal, and write, upon receiving the trigger signal, values on the plurality of data lines to the memory, thereby acquiring samples of a plurality of cycles of the input signal.
    Type: Application
    Filed: February 22, 2016
    Publication date: August 24, 2017
    Inventors: Anthony G. AIPPERSPACH, Derick G. BEHRENDS, Todd A. CHRISTENSEN, Jeffrey M. SCHERER
  • Patent number: 9715905
    Abstract: A computing system, processing unit, and method are disclosed for detecting a maximum voltage power supply for performing memory testing. The method includes generating, using a sense amplifier of a processing unit and based on a timing of a received pulse signal, first and second drive signals that collectively indicate which of first and second voltages is greater, the first and second voltages produced by respective first and second power supplies. The method also includes coupling, based on the first and second drive signals, the power supply corresponding to the relatively greater voltage of the first and second voltages with the memory.
    Type: Grant
    Filed: August 12, 2015
    Date of Patent: July 25, 2017
    Assignee: INTERNATIONAL BUSINESS MACHINES CORPORATION
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, Jeffrey M. Scherer
  • Patent number: 9583938
    Abstract: An electrostatic discharge (ESD) protection device to manage leakage current can, in response to a power good (PGOOD) signal, draw the gate terminal of an ESD clamp device to a voltage below ground. The device also drives an inverted copy of the PGOOD signal to a gated inverter, which can inhibit the gated inverter output from drawing the ESD clamp device gate terminal to ground. The ESD protection device also includes the ESD clamp device to, in response to the gate terminal of the ESD clamp device being drawn to a bias voltage less than ground, allow a leakage current to flow through the ESD clamp device that is less than a leakage current allowed to flow in response to the ESD clamp device gate terminal being drawn to ground.
    Type: Grant
    Filed: May 1, 2015
    Date of Patent: February 28, 2017
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, David W. Siljenberg
  • Publication number: 20170047099
    Abstract: A computing system, processing unit, and method are disclosed for detecting a maximum voltage power supply for performing memory testing. The method includes generating, using a sense amplifier of a processing unit and based on a timing of a received pulse signal, first and second drive signals that collectively indicate which of first and second voltages is greater, the first and second voltages produced by respective first and second power supplies. The method also includes coupling, based on the first and second drive signals, the power supply corresponding to the relatively greater voltage of the first and second voltages with the memory.
    Type: Application
    Filed: August 12, 2015
    Publication date: February 16, 2017
    Inventors: Anthony G. AIPPERSPACH, Derick G. BEHRENDS, Todd A. CHRISTENSEN, Jeffrey M. SCHERER
  • Patent number: 9496712
    Abstract: An electrostatic discharge (ESD) protection device to manage leakage current can, in response to a power good (PGOOD) signal, draw the gate terminal of an ESD clamp device to a voltage below ground. The device also drives an inverted copy of the PGOOD signal to a gated inverter, which can inhibit the gated inverter output from drawing the ESD clamp device gate terminal to ground. The ESD protection device also includes the ESD clamp device to, in response to the gate terminal of the ESD clamp device being drawn to a bias voltage less than ground, allow a leakage current to flow through the ESD clamp device that is less than a leakage current allowed to flow in response to the ESD clamp device gate terminal being drawn to ground.
    Type: Grant
    Filed: April 1, 2016
    Date of Patent: November 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, David W. Siljenberg
  • Publication number: 20160322813
    Abstract: An electrostatic discharge (ESD) protection device to manage leakage current can, in response to a power good (PGOOD) signal, draw the gate terminal of an ESD clamp device to a voltage below ground. The device also drives an inverted copy of the PGOOD signal to a gated inverter, which can inhibit the gated inverter output from drawing the ESD clamp device gate terminal to ground. The ESD protection device also includes the ESD clamp device to, in response to the gate terminal of the ESD clamp device being drawn to a bias voltage less than ground, allow a leakage current to flow through the ESD clamp device that is less than a leakage current allowed to flow in response to the ESD clamp device gate terminal being drawn to ground.
    Type: Application
    Filed: April 1, 2016
    Publication date: November 3, 2016
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, David W. Siljenberg
  • Publication number: 20160322812
    Abstract: An electrostatic discharge (ESD) protection device to manage leakage current can, in response to a power good (PGOOD) signal, draw the gate terminal of an ESD clamp device to a voltage below ground. The device also drives an inverted copy of the PGOOD signal to a gated inverter, which can inhibit the gated inverter output from drawing the ESD clamp device gate terminal to ground. The ESD protection device also includes the ESD clamp device to, in response to the gate terminal of the ESD clamp device being drawn to a bias voltage less than ground, allow a leakage current to flow through the ESD clamp device that is less than a leakage current allowed to flow in response to the ESD clamp device gate terminal being drawn to ground.
    Type: Application
    Filed: May 1, 2015
    Publication date: November 3, 2016
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, David W. Siljenberg
  • Patent number: 9424389
    Abstract: A method and circuit for implementing enhanced performance dynamic evaluation, and a design structure on which the subject circuit resides are provided. The dynamic evaluation circuit includes a combined precharge and keeper device connected to a precharge node. The dynamic evaluation circuit includes control logic providing a control input to the combined precharge and keeper device. The combined precharge and keeper device responsive to the control input holds the precharge node precharged when the precharge node is not discharged early in an evaluate cycle.
    Type: Grant
    Filed: December 18, 2014
    Date of Patent: August 23, 2016
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, Jesse D. Smith
  • Patent number: 9396303
    Abstract: A method and circuit for implementing enhanced performance dynamic evaluation, and a design structure on which the subject circuit resides are provided. The dynamic evaluation circuit includes a combined precharge and keeper device connected to a precharge node. The dynamic evaluation circuit includes control logic providing a control input to the combined precharge and keeper device. The combined precharge and keeper device responsive to the control input holds the precharge node precharged when the precharge node is not discharged early in an evaluate cycle.
    Type: Grant
    Filed: April 24, 2015
    Date of Patent: July 19, 2016
    Assignee: International Business Machines Corporation
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, Jesse D. Smith
  • Publication number: 20160180009
    Abstract: A method and circuit for implementing enhanced performance dynamic evaluation, and a design structure on which the subject circuit resides are provided. The dynamic evaluation circuit includes a combined precharge and keeper device connected to a precharge node. The dynamic evaluation circuit includes control logic providing a control input to the combined precharge and keeper device. The combined precharge and keeper device responsive to the control input holds the precharge node precharged when the precharge node is not discharged early in an evaluate cycle.
    Type: Application
    Filed: April 24, 2015
    Publication date: June 23, 2016
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, Jesse D. Smith
  • Publication number: 20160180004
    Abstract: A method and circuit for implementing enhanced performance dynamic evaluation, and a design structure on which the subject circuit resides are provided. The dynamic evaluation circuit includes a combined precharge and keeper device connected to a precharge node. The dynamic evaluation circuit includes control logic providing a control input to the combined precharge and keeper device. The combined precharge and keeper device responsive to the control input holds the precharge node precharged when the precharge node is not discharged early in an evaluate cycle.
    Type: Application
    Filed: December 18, 2014
    Publication date: June 23, 2016
    Inventors: Anthony G. Aipperspach, Derick G. Behrends, Todd A. Christensen, Jesse D. Smith
  • Patent number: 9312858
    Abstract: A level shifter circuit for coupling a first circuit, that uses a first supply voltage, with a second circuit, that uses a second supply voltage, includes an input node to receive an input signal and an output node to output to a level-shifted output signal corresponding with the input signal. An idle state on the input node corresponds with a particular binary logic value that is maintained for a first time period, and which is detected by a detection sub-circuit. Further, the level shifter circuit includes a first inverter that uses the second supply voltage, and has a feedback path between the input and output of the first inverter. The feedback path includes a first resistive element and a first transmission gate. The first transmission gate is configurable to open the feedback path when the detection sub-circuit detects an idle state on the input node of the level shifter circuit.
    Type: Grant
    Filed: June 2, 2014
    Date of Patent: April 12, 2016
    Assignee: International Business Machines Corporation
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach
  • Patent number: 9287873
    Abstract: A level shifter circuit for coupling a first circuit, that uses a first supply voltage, with a second circuit, that uses a second supply voltage, includes an input node to receive an input signal and an output node to output to a level-shifted output signal corresponding with the input signal. An idle state on the input node corresponds with a particular binary logic value that is maintained for a first time period, and which is detected by a detection sub-circuit. Further, the level shifter circuit includes a first inverter that uses the second supply voltage, and has a feedback path between the input and output of the first inverter. The feedback path includes a first resistive element and a first transmission gate. The first transmission gate is configurable to open the feedback path when the detection sub-circuit detects an idle state on the input node of the level shifter circuit.
    Type: Grant
    Filed: August 20, 2014
    Date of Patent: March 15, 2016
    Assignee: International Business Machines Corporation
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach
  • Patent number: 9218880
    Abstract: A TCAM may have a plurality of rows of cells. Each row may have a match line. Each cell may have elements for storing first and second bits, and compare circuitry associated to determine matches between a bit of a search word and data stored in the cell. For at least one first row of the rows, the TCAM includes a valid row cell having at least one element to store a partial update indication. The valid row cell may cause the match line associated with the first row to signal that the first row does not match a search word when the partial update indication associated with the first row is enabled. When the partial update indication associated with the first row is disabled, the determination of matches with a search word is performed solely by the compare circuitry without influence of the valid row cell.
    Type: Grant
    Filed: May 20, 2014
    Date of Patent: December 22, 2015
    Assignee: International Business Machines Corporation
    Inventors: Igor Arsovski, Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach
  • Publication number: 20150349778
    Abstract: A level shifter circuit for coupling a first circuit, that uses a first supply voltage, with a second circuit, that uses a second supply voltage, includes an input node to receive an input signal and an output node to output to a level-shifted output signal corresponding with the input signal. An idle state on the input node corresponds with a particular binary logic value that is maintained for a first time period, and which is detected by a detection sub-circuit. Further, the level shifter circuit includes a first inverter that uses the second supply voltage, and has a feedback path between the input and output of the first inverter. The feedback path includes a first resistive element and a first transmission gate. The first transmission gate is configurable to open the feedback path when the detection sub-circuit detects an idle state on the input node of the level shifter circuit.
    Type: Application
    Filed: June 2, 2014
    Publication date: December 3, 2015
    Applicant: International Business Machines Corporation
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach
  • Publication number: 20150349779
    Abstract: A level shifter circuit for coupling a first circuit, that uses a first supply voltage, with a second circuit, that uses a second supply voltage, includes an input node to receive an input signal and an output node to output to a level-shifted output signal corresponding with the input signal. An idle state on the input node corresponds with a particular binary logic value that is maintained for a first time period, and which is detected by a detection sub-circuit. Further, the level shifter circuit includes a first inverter that uses the second supply voltage, and has a feedback path between the input and output of the first inverter. The feedback path includes a first resistive element and a first transmission gate. The first transmission gate is configurable to open the feedback path when the detection sub-circuit detects an idle state on the input node of the level shifter circuit.
    Type: Application
    Filed: August 20, 2014
    Publication date: December 3, 2015
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach
  • Patent number: 9196671
    Abstract: A semiconductor device may include a through substrate via (TSV) conductive structure that may extend vertically through two or more layers of the semiconductor device. The TSV conductive structure may be coupled to a first voltage supply. The semiconductor device may include substrate layer. The substrate layer may include a first dopant region and a second dopant region. The first dopant region may be coupled to a second voltage supply. The second dopant region may be in electrical communication with the TSV conductive structure. The semiconductor device may include a first metal layer and a first insulator layer disposed between the substrate layer and the first metal layer. The first metal layer may laterally contact the TSV conductive structure. The first and second voltage supply may be adapted to create a capacitance at a junction between the first dopant region and the second dopant region.
    Type: Grant
    Filed: November 2, 2012
    Date of Patent: November 24, 2015
    Assignee: International Business Machines Corporation
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach, John E. Sheets, II
  • Patent number: 9153638
    Abstract: A semiconductor device may include a through substrate via (TSV) conductive structure that may extend vertically through two or more layers of the semiconductor device. The TSV conductive structure may be coupled to a first voltage supply. The semiconductor device may include substrate layer. The substrate layer may include a first dopant region and a second dopant region. The first dopant region may be coupled to a second voltage supply. The second dopant region may be in electrical communication with the TSV conductive structure. The semiconductor device may include a first metal layer and a first insulator layer disposed between the substrate layer and the first metal layer. The first metal layer may laterally contact the TSV conductive structure. The first and second voltage supply may be adapted to create a capacitance at a junction between the first dopant region and the second dopant region.
    Type: Grant
    Filed: February 11, 2013
    Date of Patent: October 6, 2015
    Assignee: International Business Machines Corporation
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach, John E. Sheets, II
  • Patent number: 9142560
    Abstract: A semiconductor chip has shapes on a particular level that are small enough to require a first mask and a second mask, the first mask and the second mask used in separate exposures during processing. A circuit on the semiconductor chip requires close tracking between a first and a second FET (field effect transistor). For example, the particular level may be a gate shape level. Separate exposures of gate shapes using the first mask and the second mask will result in poorer FET tracking (e.g., gate length, threshold voltage) than for FETs having gate shapes defined by only the first mask. FET tracking is selectively improved by laying out a circuit such that selective FETs are defined by the first mask. In particular, static random access memory (SRAM) design benefits from close tracking of six or more FETs in an SRAM cell.
    Type: Grant
    Filed: August 18, 2014
    Date of Patent: September 22, 2015
    Assignee: International Business Machines Corporation
    Inventors: Derick G. Behrends, Todd A. Christensen, Travis R. Hebig, Michael Launsbach, Daniel M. Nelson