Patents by Inventor Derin Sevenler

Derin Sevenler has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240067910
    Abstract: Provided herein are methods of intracellular delivery of a substance to one or more cells. The methods include providing a substrate defining a micro-channel in fluid communication with a first chamber and optionally in fluid communication with a second chamber, the micro-channel having a hydraulic diameter that is less than a hydraulic diameter of the first and second chambers; and driving a cell suspension through the micro-channel, thereby: i) causing the one or more cells to be stretched along a direction of flow and ii) inducing a formation of one or more temporary pores in a membrane of the one or more cells, wherein the cell suspension comprises the one or more cells, a polymer, and the substance. Also provided are systems for the intracellular delivery of a substance to one or more cells.
    Type: Application
    Filed: January 12, 2022
    Publication date: February 29, 2024
    Inventors: Derin Sevenler, Mehmet Toner
  • Publication number: 20230365914
    Abstract: Methods of bulk cryopreservation of C. parvum oocysts by vitrification using high aspect ratio cryopreservation devices are disclosed. Cryopreserved oocysts exhibit high viability, maintain infectivity in vitro, and are infectious to interferon-? knockout mice. The course of the infection is comparable to that observed with unfrozen oocysts.
    Type: Application
    Filed: March 19, 2021
    Publication date: November 16, 2023
    Inventors: Derin Sevenler, Rebecca Sandlin, Mehmet Toner, Giovanni Widmer, Saul Tzipori, Justyna Jaskiewicz
  • Publication number: 20230270103
    Abstract: Hydrogel beads having tunable rates of loading and unloading of cryoprotective agents are provided herein. Such hydrogel beads can be dispersed throughout a cell suspension to enable loading and unloading of cryoprotective agents from cells in a gradual and distributed manner that protects the cells from osmotic damage. Lymphocyte viability after cryopreservation is significantly greater when cryoprotective agents are loaded and unloaded using hydrogel beads compared to conventional media exchange methods.
    Type: Application
    Filed: July 19, 2021
    Publication date: August 31, 2023
    Inventors: Derin Sevenler, Rebecca Sandlin, Mehmet Toner
  • Publication number: 20230116588
    Abstract: Herein is described kinetic assay, in which individual binding events are detected and monitored during sample incubation. This method uses interferometric reflectance imaging to detect thousands of individual binding events across a multiplex solid phase sensor with a large area. A dynamic tracking procedure is used to measure the duration of each event. From this, the total rates of binding and de-binding as well as the distribution of binding event durations are determined. Systems and components for performing the kinetic assay are also described.
    Type: Application
    Filed: December 7, 2022
    Publication date: April 13, 2023
    Applicant: Trustees of Boston University
    Inventors: Derin Sevenler, M. Selim Ünlü
  • Patent number: 11561221
    Abstract: Herein is described kinetic assay, in which individual binding events are detected and monitored during sample incubation. This method uses interferometric reflectance imaging to detect thousands of individual binding events across a multiplex solid phase sensor with a large area. A dynamic tracking procedure is used to measure the duration of each event. From this, the total rates of binding and de-binding as well as the distribution of binding event durations are determined. Systems and components for performing the kinetic assay are also described.
    Type: Grant
    Filed: May 2, 2019
    Date of Patent: January 24, 2023
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Derin Sevenler, M. Selim Ünlü
  • Publication number: 20220307066
    Abstract: The disclosure addresses methods, compositions, and kits used to detect or quantify polymerase inhibitors in biological samples. The polymerase inhibitors can be therapeutic agents, or metabolites thereof, that have been administered to a subject as part of, for example, antiretroviral therapy (ART) or pre-exposure prophylaxis (PrEP) to address potential infections by, e.g., retroviruses such as HIV and other viruses reliant on reverse transcription. These methods, compositions, and kits can be applied to monitor a subject's compliance with the indicated therapies and can inform potential adjustments to the therapies.
    Type: Application
    Filed: June 12, 2020
    Publication date: September 29, 2022
    Applicants: University of Washington, The General Hospital Corporation
    Inventors: Ayokunle Olanrewaju, Paul Drain, Jonathan Posner, Derin Sevenler, Benjamin Sullivan, Andrew Bender, Jane Zhang, Rebecca Sandlin
  • Patent number: 11047790
    Abstract: An enhanced single particle interferometric reflectance imaging system includes an illumination source configured to produce illumination light along an illumination path toward a target substrate. The target substrate can be configured to reflect the illuminating light along one or more collection paths toward one or more imaging sensors. The target substrate includes a base substrate having a first reflecting surface and a transparent spacer layer having a first surface in contact with the first reflecting surface and a second reflecting surface on a side opposite to the first surface. The transparent spacer layer has a predefined thickness that is determined as a function of a wavelength of the illuminating light and produces a predefined radiation pattern of optical scattering when nanoparticles are positioned on or near the second reflective surface. In addition, one or more of the collection paths can also include an amplitude mask selected to match the radiation pattern.
    Type: Grant
    Filed: May 9, 2017
    Date of Patent: June 29, 2021
    Assignee: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Selim M. Unlu, Oguzhan Avci, Derin Sevenler
  • Publication number: 20210069706
    Abstract: A low cost/disposable fluidic cartridge for interferometric reflectance imaging sensor is described. Systems and methods using this cartridge are also disclosed. The cartridges and systems simplify the protocols and minimizes potential user error, for example, in biosensing experiments and assays.
    Type: Application
    Filed: December 11, 2018
    Publication date: March 11, 2021
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: M. Selim ÜNLÜ, Derin SEVENLER, Jabob TRUEB, Steven SCHERR
  • Patent number: 10585042
    Abstract: A system for analyzing one or more liquid samples includes a microwell plate including a plurality of rows of wells configured to store liquid samples, a sensor array that is moveable relative to the microwell plate along a first axis between a first position and a second position to allow a portion of the sensor array to be disposed within a first one of the plurality of rows of wells when the sensor array is in the second position, an objective, and one or more linear translation stages configured to move the microwell plate relative to the objective (i) along a second axis that is orthogonal to the first axis, (ii) along a third axis that is orthogonal to the first axis and the second axis, or (iii) both (i) and (ii).
    Type: Grant
    Filed: June 5, 2019
    Date of Patent: March 10, 2020
    Assignees: TRUSTEES OF BOSTON UNIVERSITY, NANOVIEW BIOSCIENCES, INC.
    Inventors: M. Selim Ünlü, Derin Sevenler, Jacob Trueb, Oguzhan Avci, Celalettin Yurdakul, Steven Scherr, George G. Daaboul, David S. Freedman
  • Publication number: 20190376896
    Abstract: A system for analyzing one or more liquid samples includes a microwell plate including a plurality of rows of wells configured to store liquid samples, a sensor array that is moveable relative to the microwell plate along a first axis between a first position and a second position to allow a portion of the sensor array to be disposed within a first one of the plurality of rows of wells when the sensor array is in the second position, an objective, and one or more linear translation stages configured to move the microwell plate relative to the objective (i) along a second axis that is orthogonal to the first axis, (ii) along a third axis that is orthogonal to the first axis and the second axis, or (iii) both (i) and (ii).
    Type: Application
    Filed: June 5, 2019
    Publication date: December 12, 2019
    Inventors: M. SELIM ÜNLÜ, DERIN SEVENLER, JACOB TRUEB, OGUZHAN AVCI, CELALETTIN YURDAKUL, STEVEN SCHERR, GEORGE G. DAABOUL, DAVID S. FREEDMAN
  • Publication number: 20190339268
    Abstract: Herein is described kinetic assay, in which individual binding events are detected and monitored during sample incubation. This method uses interferometric reflectance imaging to detect thousands of individual binding events across a multiplex solid phase sensor with a large area. A dynamic tracking procedure is used to measure the duration of each event. From this, the total rates of binding and de-binding as well as the distribution of binding event durations are determined. Systems and components for performing the kinetic assay are also described.
    Type: Application
    Filed: May 2, 2019
    Publication date: November 7, 2019
    Applicant: Trustees of Boston University
    Inventors: Derin Sevenler, M. Selim Ünlü
  • Publication number: 20190162647
    Abstract: An enhanced single particle interferometric reflectance imaging system includes an illumination source configured to produce illumination light along an illumination path toward a target substrate. The target substrate can be configured to reflect the illuminating light along one or more collection paths toward one or more imaging sensors. The target substrate includes a base substrate having a first reflecting surface and a transparent spacer layer having a first surface in contact with the first reflecting surface and a second reflecting surface on a side opposite to the first surface. The transparent spacer layer has a predefined thickness that is determined as a function of a wavelength of the illuminating light and produces a predefined radiation pattern of optical scattering when nanoparticles are positioned on or near the second reflective surface. In addition, one or more of the collection paths can also include an amplitude mask selected to match the radiation pattern.
    Type: Application
    Filed: May 9, 2017
    Publication date: May 30, 2019
    Applicant: TRUSTEES OF BOSTON UNIVERSITY
    Inventors: Selim M. UNLU, Oguzhan AVCI, Derin Sevenler