Patents by Inventor Dermot G. O'Keeffe

Dermot G. O'Keeffe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10674459
    Abstract: An improved receiver for use in a data pocket communications is provide, where the process of configuring the gain of the receiver and identifying a preamble in the data packet are made more robust. The improved receiver does not need to rely on the received power level exceeding a trigger threshold to initiate the gain control. Instead the gain control runs while the receiver is waiting for a data packet. The frequency correction process can run concurrently with the gain control process.
    Type: Grant
    Filed: March 10, 2017
    Date of Patent: June 2, 2020
    Assignee: Analog Devices Global
    Inventors: Michael O'Brien, Sean Francis Sexton, Joshua Nekl, Dermot G. O'Keeffe
  • Patent number: 10591429
    Abstract: A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N?1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2? radians or a multiple thereof, where N is greater than 1.
    Type: Grant
    Filed: June 20, 2016
    Date of Patent: March 17, 2020
    Assignee: Analog Devices, Inc.
    Inventors: Colin G. Lyden, Donal Bourke, Dennis A. Dempsey, Dermot G. O'Keeffe, Patrick C. Kirby
  • Patent number: 10491264
    Abstract: RF communication systems that provide combined demodulation and despreading are provided herein. In certain embodiments, an RF communication system generates an in-phase (I) signal and a quadrature-phase (Q) signal based on processing a received spread spectrum signal carrying a sequence of data symbols. The data symbols each have a symbol period and are coded by one or more multi-bit spreading codes. The RF communication system includes a symbol correlator that delays the I signal and the Q signal by an integer number of symbol periods to thereby generate a delayed I signal and a delayed Q signal, respectively. Additionally, the symbol correlator generates a correlation signal based on correlating the delayed I signal to the I signal and correlating the delayed Q signal to the Q signal. The RF communication system processes the correlation signal to recover the sequence of data symbols.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: November 26, 2019
    Assignee: Analog Devices Global Unlimited Company
    Inventors: Kenneth Joseph Mulvaney, Dermot G. O'Keeffe, Philip Eugene Quinlan
  • Patent number: 10386324
    Abstract: Subject matter herein can include identifying a biochemical test strip assembly electrically, such as using the same test circuitry as can be used to perform an electrochemical measurement, without requiring use of optical techniques. The identification can include using information about a measured susceptance of an identification feature included as a portion of the test strip assembly. The identification can be used by test circuitry to select test parameters or calibration values, or to select an appropriate test protocol for the type of test strip coupled to the test circuitry. The identification can be used by the test circuitry to validate or reject a test strip assembly, such as to inhibit use of test strips that fail meet one or more specified criteria.
    Type: Grant
    Filed: February 22, 2016
    Date of Patent: August 20, 2019
    Assignee: Analog Devices Global
    Inventors: Liam Riordan, Tudor M Vinereanu, Paul V. Errico, Dermot G. O'Keeffe, Camille L. Huin, Donal Bourke
  • Patent number: 10309803
    Abstract: Sensor error detection with an additional channel is disclosed herein. First and second magnetic sensing elements can be disposed at angles relative to each other. In some embodiments, the first and second magnetic sensing elements can be magnetoresistive sensing elements, such as anisotropic magnetoresistance (AMR) sensing elements. Sensor data from first and second channels, respectively, having the first and second sensing elements, can be obtained. Third channel can receive a signal from the first sensing element and a signal from the second sensing element, and sensor data from the third channel can be obtained. Expected third channel data can be determined and compared to the obtained third channel data to indicate error.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: June 4, 2019
    Assignees: Analog Devices Global, Sensitec GmbH
    Inventors: Gavin Patrick Cosgrave, Jochen Schmitt, Dermot G. O'Keeffe
  • Patent number: 10267870
    Abstract: Sensor error detection with an additional sensing channel is disclosed herein. First, second, third sensing elements can be disposed at angles relative to one another. In some embodiments, the first, second, and third sensing elements can be magnetic sensing elements, such as anisotropic magnetoresistance (AMR) sensing elements. Sensor data from first, second, and third sensing channels, respectively having the first, second, and third sensing elements, can be obtained. Expected third sensing channel data can be determined and compared to the obtained third sensing channel data to indicate error.
    Type: Grant
    Filed: February 19, 2016
    Date of Patent: April 23, 2019
    Assignee: Analog Devices Global
    Inventors: Gavin Patrick Cosgrave, Dermot G. O'Keeffe
  • Publication number: 20180263001
    Abstract: An improved receiver for use in a data pocket communications is provide, where the process of configuring the gain of the receiver and identifying a preamble in the data packet are made more robust. The improved receiver does not need to rely on the received power level exceeding a trigger threshold to initiate the gain control. Instead the gain control runs while the receiver is waiting for a data packet. The frequency correction process can run concurrently with the gain control process.
    Type: Application
    Filed: March 10, 2017
    Publication date: September 13, 2018
    Inventors: Michael O'Brien, Sean Francis Sexton, Joshua Nekl, Dermot G. O'Keeffe
  • Publication number: 20170023506
    Abstract: A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N?1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2? radians or a multiple thereof, where N is greater than 1.
    Type: Application
    Filed: June 20, 2016
    Publication date: January 26, 2017
    Inventors: Colin G. Lyden, Donal Bourke, Dennis A. Dempsey, Dermot G. O'Keeffe, Patrick C. Kirby
  • Publication number: 20160245893
    Abstract: Sensor error detection with an additional sensing channel is disclosed herein. First, second, third sensing elements can be disposed at angles relative to one another. In some embodiments, the first, second, and third sensing elements can be magnetic sensing elements, such as anisotropic magnetoresistance (AMR) sensing elements. Sensor data from first, second, and third sensing channels, respectively having the first, second, and third sensing elements, can be obtained. Expected third sensing channel data can be determined and compared to the obtained third sensing channel data to indicate error.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 25, 2016
    Inventors: Gavin Patrick Cosgrave, Dermot G. O'Keeffe
  • Publication number: 20160245677
    Abstract: Sensor error detection with an additional channel is disclosed herein. First and second magnetic sensing elements can be disposed at angles relative to each other. In some embodiments, the first and second magnetic sensing elements can be magnetoresistive sensing elements, such as anisotropic magnetoresistance (AMR) sensing elements. Sensor data from first and second channels, respectively, having the first and second sensing elements, can be obtained. Third channel can receive a signal from the first sensing element and a signal from the second sensing element, and sensor data from the third channel can be obtained. Expected third channel data can be determined and compared to the obtained third channel data to indicate error.
    Type: Application
    Filed: February 19, 2016
    Publication date: August 25, 2016
    Inventors: Gavin Patrick Cosgrave, Jochen Schmitt, Dermot G. O'Keeffe
  • Publication number: 20140132325
    Abstract: A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N?1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2? radians or a multiple thereof, where N is greater than 1.
    Type: Application
    Filed: January 17, 2014
    Publication date: May 15, 2014
    Applicant: ANALOG DEVICES, INC.
    Inventors: Colin LYDEN, Donal BOURKE, Dennis A. DEMPSEY, Dermot G. O'KEEFFE, Patrick KIRBY
  • Patent number: 8659349
    Abstract: A control circuit for use with a four terminal sensor, the sensor having first and second drive terminals and first and second measurement terminals, the control circuit arranged to drive at least one of the first and second drive terminals with an excitation signal, to sense a voltage difference between the first and second measurement terminals, and control the excitation signal such that the voltage difference between the first and second measurement terminals is within a target range of voltages, and wherein the control circuit includes N poles in its transfer characteristic and N?1 zeros in its transfer characteristic such that when a loop gain falls to unity the phase shift around a closed loop is not substantially 2? radians or a multiple thereof, where N is greater than 1.
    Type: Grant
    Filed: September 25, 2012
    Date of Patent: February 25, 2014
    Assignee: Analog Devices, Inc.
    Inventors: Colin Lyden, Donal Bourke, Dennis A. Dempsey, Dermot G. O'Keeffe, Patrick Kirby