Patents by Inventor Derrick S. Kamber

Derrick S. Kamber has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230317444
    Abstract: Embodiments of the present disclosure include techniques related to techniques for processing materials for manufacture of group-III metal nitride and gallium based substrates. More specifically, embodiments of the disclosure include techniques for growing large area substrates using a combination of processing techniques. Merely by way of example, the disclosure can be applied to growing crystals of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, and others for manufacture of bulk or patterned substrates. Such bulk or patterned substrates can be used for a variety of applications including optoelectronic and electronic devices, lasers, light emitting diodes, solar cells, photo electrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, and others.
    Type: Application
    Filed: June 8, 2023
    Publication date: October 5, 2023
    Applicant: SLT Technologies, Inc.
    Inventors: Wenkan JIANG, Mark P. D'EVELYN, Derrick S. KAMBER, Dirk EHRENTRAUT, Jonathan D. COOK, James WENGER
  • Patent number: 11705322
    Abstract: Embodiments of the present disclosure include techniques related to techniques for processing materials for manufacture of group-III metal nitride and gallium based substrates. More specifically, embodiments of the disclosure include techniques for growing large area substrates using a combination of processing techniques. Merely by way of example, the disclosure can be applied to growing crystals of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, and others for manufacture of bulk or patterned substrates. Such bulk or patterned substrates can be used for a variety of applications including optoelectronic and electronic devices, lasers, light emitting diodes, solar cells, photo electrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, and others.
    Type: Grant
    Filed: May 22, 2020
    Date of Patent: July 18, 2023
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Wenkan Jiang, Mark P. D'Evelyn, Derrick S. Kamber, Dirk Ehrentraut, Jonathan D. Cook, James Wenger
  • Patent number: 11466384
    Abstract: A method for forming a laterally-grown group III metal nitride crystal includes providing a substrate, the substrate including one of sapphire, silicon carbide, gallium arsenide, silicon, germanium, a silicon-germanium alloy, MgAl2O4 spinel, ZnO, ZrB2, BP, InP, AlON, ScAlMgO4, YFeZnO4, MgO, Fe2NiO4, LiGa5O8, Na2MoO4, Na2WO4, In2CdO4, lithium aluminate (LiAlO2), LiGaO2, Ca8La2(PO4)6O2, gallium nitride, or aluminum nitride (AlN), forming a pattern on the substrate, the pattern comprising growth centers having a minimum dimension between 1 micrometer and 100 micrometers, and being characterized by at least one pitch dimension between 20 micrometers and 5 millimeters, growing a group III metal nitride from the pattern of growth centers vertically and laterally, and removing the laterally-grown group III metal nitride layer from the substrate.
    Type: Grant
    Filed: January 7, 2020
    Date of Patent: October 11, 2022
    Assignee: SLT Technologies, Inc.
    Inventors: Mark P. D'Evelyn, Derrick S. Kamber
  • Patent number: 11453956
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Grant
    Filed: August 26, 2019
    Date of Patent: September 27, 2022
    Assignee: SLT Technologies, Inc.
    Inventors: Mark P. D'Evelyn, James S. Speck, Derrick S. Kamber, Douglas W. Pocius
  • Publication number: 20210249252
    Abstract: Embodiments of the present disclosure include techniques related to techniques for processing materials for manufacture of group-III metal nitride and gallium based substrates. More specifically, embodiments of the disclosure include techniques for growing large area substrates using a combination of processing techniques. Merely by way of example, the disclosure can be applied to growing crystals of GaN, AlN, InN, InGaN, AlGaN, and AlInGaN, and others for manufacture of bulk or patterned substrates. Such bulk or patterned substrates can be used for a variety of applications including optoelectronic and electronic devices, lasers, light emitting diodes, solar cells, photo electrochemical water splitting and hydrogen generation, photodetectors, integrated circuits, and transistors, and others.
    Type: Application
    Filed: May 22, 2020
    Publication date: August 12, 2021
    Inventors: Wenkan JIANG, Mark P. D'EVELYN, Derrick S. KAMBER, Dirk EHRENTRAUT, Jonathan D. COOK, James WENGER
  • Patent number: 11047041
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Grant
    Filed: March 10, 2020
    Date of Patent: June 29, 2021
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Douglas W. Pocius, Derrick S. Kamber, Mark P. D'Evelyn, Jonathan D. Cook
  • Publication number: 20200283892
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Application
    Filed: March 10, 2020
    Publication date: September 10, 2020
    Inventors: Douglas W. POCIUS, Derrick S. KAMBER, Mark P. D'EVELYN, Jonathan D. COOK
  • Publication number: 20200224331
    Abstract: A method for forming a laterally-grown group III metal nitride crystal includes providing a substrate, the substrate including one of sapphire, silicon carbide, gallium arsenide, silicon, germanium, a silicon-germanium alloy, MgAl2O4 spinel, ZnO, ZrB2, BP, InP, AlON, ScAlMgO4, YFeZnO4, MgO, Fe2NiO4, LiGa5O8, Na2MoO4, Na2WO4, In2CdO4, lithium aluminate (LiAlO2), LiGaO2, Ca8La2(PO4)6O2, gallium nitride, or aluminum nitride (AlN), forming a pattern on the substrate, the pattern comprising growth centers having a minimum dimension between 1 micrometer and 100 micrometers, and being characterized by at least one pitch dimension between 20 micrometers and 5 millimeters, growing a group III metal nitride from the pattern of growth centers vertically and laterally, and removing the laterally-grown group III metal nitride layer from the substrate.
    Type: Application
    Filed: January 7, 2020
    Publication date: July 16, 2020
    Inventors: Mark P. D'EVELYN, Derrick S. KAMBER
  • Patent number: 10619239
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Grant
    Filed: June 29, 2018
    Date of Patent: April 14, 2020
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Douglas W. Pocius, Derrick S. Kamber, Mark P. D'Evelyn, Jonathan D. Cook
  • Patent number: 10604865
    Abstract: Methods for large-scale manufacturing of semipolar gallium nitride boules are disclosed. The disclosed methods comprise suspending large-area single crystal seed plates in a rack, placing the rack in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and growing crystals ammonothermally. A bi-faceted growth morphology may be maintained to facilitate fabrication of large area semipolar wafers without growing thick boules.
    Type: Grant
    Filed: June 26, 2018
    Date of Patent: March 31, 2020
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Mark P. D'Evelyn, Dirk Ehrentraut, Derrick S. Kamber, Bradley C. Downey
  • Publication number: 20200087813
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Application
    Filed: August 26, 2019
    Publication date: March 19, 2020
    Inventors: Mark P. D'Evelyn, James S. Speck, Derrick S. Kamber, Douglas W. Pocius
  • Patent number: 10400352
    Abstract: Techniques for processing materials in supercritical fluids including processing in a capsule disposed within a high-pressure apparatus enclosure are disclosed. The disclosed techniques are useful for growing crystals of GaN, AlN, InN, and their alloys, including InGaN, AlGaN, and AlInGaN for the manufacture of bulk or patterned substrates, which in turn can be used to make optoelectronic devices, lasers, light emitting diodes, solar cells, photoelectrochemical water splitting and hydrogen generation devices, photodetectors, integrated circuits, and transistors.
    Type: Grant
    Filed: February 7, 2017
    Date of Patent: September 3, 2019
    Assignee: SORAA, INC.
    Inventors: Mark P. D'Evelyn, James S. Speck, Derrick S. Kamber, Douglas W. Pocius
  • Publication number: 20190161858
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Application
    Filed: June 29, 2018
    Publication date: May 30, 2019
    Inventors: Douglas W. POCIUS, Derrick S. KAMBER, Mark P. D'EVELYN, Jonathan D. COOK
  • Publication number: 20190003078
    Abstract: Methods for large-scale manufacturing of semipolar gallium nitride boules are disclosed. The disclosed methods comprise suspending large-area single crystal seed plates in a rack, placing the rack in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and growing crystals ammonothermally. A bi-faceted growth morphology may be maintained to facilitate fabrication of large area semipolar wafers without growing thick boules.
    Type: Application
    Filed: June 26, 2018
    Publication date: January 3, 2019
    Inventors: Mark P. D'EVELYN, Dirk EHRENTRAUT, Derrick S. KAMBER, Bradley C. DOWNEY
  • Publication number: 20180371609
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Application
    Filed: June 29, 2018
    Publication date: December 27, 2018
    Inventors: Douglas W. POCIUS, Derrick S. KAMBER, Mark P. D'EVELYN, Jonathan D. COOK
  • Patent number: 10145026
    Abstract: Methods for large-scale manufacturing of semipolar gallium nitride boules are disclosed. The disclosed methods comprise suspending large-area single crystal seed plates in a rack, placing the rack in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and growing crystals ammonothermally. A bi-faceted growth morphology may be maintained to facilitate fabrication of large area semipolar wafers without growing thick boules.
    Type: Grant
    Filed: June 3, 2013
    Date of Patent: December 4, 2018
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Mark P. D'Evelyn, Dirk Ehrentraut, Derrick S. Kamber, Bradley C. Downey
  • Patent number: 10094017
    Abstract: A process of preparing polycrystalline group III nitride chunks comprising the steps of (a) placing a group III metal inside a source chamber; (b) flowing a halogen-containing gas over the group III metal to form a group III metal halide; (c) contacting the group III metal halide with a nitrogen-containing gas in a deposition chamber containing a foil, the foil comprising at least one of Mo, W, Ta, Pd, Pt, Ir, or Re; (d) forming a polycrystalline group III nitride layer on the foil within the deposition chamber; (e) removing the polycrystalline group III nitride layer from the foil; and (f) comminuting the polycrystalline group III nitride layer to form the polycrystalline group III nitride chunks, wherein the removing and the comminuting are performed in any order or simultaneously.
    Type: Grant
    Filed: January 29, 2016
    Date of Patent: October 9, 2018
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Douglas W. Pocius, Derrick S. Kamber, Mark P. D'Evelyn, Jonathan D. Cook
  • Patent number: 10036099
    Abstract: Large-scale manufacturing of gallium nitride boules using m-plane or wedge-shaped seed crystals can be accomplished using ammonothermal growth methods. Large-area single crystal seed plates are suspended in a rack, placed in a large diameter autoclave or internally-heated high pressure apparatus along with ammonia and a mineralizer, and crystals are grown ammonothermally. The orientation of the m-plane or wedge-shaped seed crystals are chosen to provide efficient utilization of the seed plates and of the volume inside the autoclave or high pressure apparatus.
    Type: Grant
    Filed: January 16, 2015
    Date of Patent: July 31, 2018
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Mark P. D'Evelyn, Dirk Ehrentraut, Derrick S. Kamber, Bradley C. Downey
  • Patent number: 10029955
    Abstract: An improved capsule and method of use for processing materials or growing crystals in supercritical fluids is disclosed. The capsule is scalable up to very large volumes and provides for cost-effective processing. In conjunction with suitable high pressure apparatus, the capsule is capable of processing materials at pressures and temperatures of up to approximately 8 GPa and 1500° C., respectively.
    Type: Grant
    Filed: October 22, 2012
    Date of Patent: July 24, 2018
    Assignee: SLT TECHNOLOGIES, INC.
    Inventors: Pakalapati Tirumala Rajeev, Douglas Wayne Pocius, Derrick S. Kamber, Michael Coulter
  • Patent number: RE47114
    Abstract: A gettered polycrystalline group III metal nitride is formed by heating a group III metal with an added getter in a nitrogen-containing gas. Most of the residual oxygen in the gettered polycrystalline nitride is chemically bound by the getter. The gettered polycrystalline group III metal nitride is useful as a raw material for ammonothermal growth of bulk group III nitride crystals.
    Type: Grant
    Filed: March 24, 2017
    Date of Patent: November 6, 2018
    Assignee: SLT Technologies, Inc.
    Inventors: Mark P. D'Evelyn, Derrick S. Kamber