Patents by Inventor Derrick Shaughnessy

Derrick Shaughnessy has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11913874
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: April 5, 2021
    Date of Patent: February 27, 2024
    Assignee: KLA Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Publication number: 20210223166
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Application
    Filed: April 5, 2021
    Publication date: July 22, 2021
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 10969328
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: February 25, 2019
    Date of Patent: April 6, 2021
    Assignee: KLA Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 10804167
    Abstract: Methods and systems for performing co-located measurements of semiconductor structures with two or more measurement subsystems are presented herein. To achieve a sufficiently small measurement box size, the metrology system monitors and corrects the alignment of the measurement spot of each metrology subsystem with a metrology target to achieve maximum co-location of the measurement spots of each metrology subsystem with the metrology target. In another aspect, measurements are performed simultaneously by two or more metrology subsystems at high throughput at the same wafer location. Furthermore, the metrology system effectively decouples simultaneously acquired measurement signals associated with each measurement subsystem. This maximizes signal information associated with simultaneous measurements of the same metrology by two or more metrology subsystems.
    Type: Grant
    Filed: January 24, 2019
    Date of Patent: October 13, 2020
    Assignee: KLA-Tencor Corporation
    Inventors: David Y. Wang, Esen Salcin, Michael Friedmann, Derrick Shaughnessy, Andrei V. Shchegrov, Jonathan M. Madsen, Alexander Kuznetsov
  • Publication number: 20200243400
    Abstract: Methods and systems for performing co-located measurements of semiconductor structures with two or more measurement subsystems are presented herein. To achieve a sufficiently small measurement box size, the metrology system monitors and corrects the alignment of the measurement spot of each metrology subsystem with a metrology target to achieve maximum co-location of the measurement spots of each metrology subsystem with the metrology target. In another aspect, measurements are performed simultaneously by two or more metrology subsystems at high throughput at the same wafer location. Furthermore, the metrology system effectively decouples simultaneously acquired measurement signals associated with each measurement subsystem. This maximizes signal information associated with simultaneous measurements of the same metrology by two or more metrology subsystems.
    Type: Application
    Filed: January 24, 2019
    Publication date: July 30, 2020
    Inventors: David Y. Wang, Esen Salcin, Michael Friedmann, Derrick Shaughnessy, Andrei V. Shchegrov, Jonathan M. Madsen, Alexander Kuznetsov
  • Publication number: 20190195782
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Application
    Filed: February 25, 2019
    Publication date: June 27, 2019
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 10215688
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulse trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: July 22, 2016
    Date of Patent: February 26, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 10203247
    Abstract: A system for providing illumination to a measurement head for optical metrology is configured to combine illumination beams from a plurality of illumination sources to deliver illumination at one or more selected wavelengths to the measurement head. The intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. Illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
    Type: Grant
    Filed: December 5, 2016
    Date of Patent: February 12, 2019
    Assignee: KLA-Tencor Corporation
    Inventors: Gregory R. Brady, Andrei V. Shchegrov, Lawrence D. Rotter, Derrick A. Shaughnessy, Anatoly Shchemelinin, Ilya Bezel, Muzammil A. Arain, Anatoly A. Vasiliev, James Andrew Allen, Oleg Shulepov, Andrew V. Hill, Ohad Bachar, Moshe Markowitz, Yaron Ish-Shalom, Ilan Sela, Amnon Manassen, Alexander Svizher, Maxim Khokhlov, Avi Abramov, Oleg Tsibulevsky, Daniel Kandel, Mark Ghinovker
  • Patent number: 10006865
    Abstract: Methods and systems are described herein for producing high radiance illumination light for use in semiconductor metrology based on a confined, sustained plasma. One or more plasma confining circuits introduce an electric field, a magnetic field, or a combination thereof to spatially confine a sustained plasma. The confinement of the sustained plasma decreases the size of the induced plasma resulting in increased radiance. In addition, plasma confinement may be utilized to shape the plasma to improve light collection and imaging onto the specimen. The induced fields may be static or dynamic. In some embodiments, additional energy is coupled into the confined, sustained plasma to further increase radiance. In some embodiments, the pump energy source employed to sustained the plasma is modulated in combination with the plasma confining circuit to reduce plasma emission noise.
    Type: Grant
    Filed: July 3, 2017
    Date of Patent: June 26, 2018
    Assignee: KLA-Tencor Corporation
    Inventors: Derrick Shaughnessy, Michael S. Bakeman, Guorong V. Zhuang, Andrei V. Shchegrov, Leonid Poslavsky
  • Patent number: 9719932
    Abstract: Methods and systems are described herein for producing high radiance illumination light for use in semiconductor metrology based on a confined, sustained plasma. One or more plasma confining circuits introduce an electric field, a magnetic field, or a combination thereof to spatially confine a sustained plasma. The confinement of the sustained plasma decreases the size of the induced plasma resulting in increased radiance. In addition, plasma confinement may be utilized to shape the plasma to improve light collection and imaging onto the specimen. The induced fields may be static or dynamic. In some embodiments, additional energy is coupled into the confined, sustained plasma to further increase radiance. In some embodiments, the pump energy source employed to sustained the plasma is modulated in combination with the plasma confining circuit to reduce plasma emission noise.
    Type: Grant
    Filed: November 4, 2014
    Date of Patent: August 1, 2017
    Assignee: KLA-Tencor Corporation
    Inventors: Derrick Shaughnessy, Michael S. Bakeman, Guorong V. Zhuang, Andrei V. Shchegrov, Leonid Poslavsky
  • Publication number: 20170146399
    Abstract: A system for providing illumination to a measurement head for optical metrology is configured to combine illumination beams from a plurality of illumination sources to deliver illumination at one or more selected wavelengths to the measurement head. The intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. Illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
    Type: Application
    Filed: December 5, 2016
    Publication date: May 25, 2017
    Inventors: Gregory R. Brady, Andrei V. Shchegrov, Lawrence D. Rotter, Derrick A. Shaughnessy, Anatoly Shchemelinin, Ilya Bezel, Muzammil A. Arain, Anatoly A. Vasiliev, James Andrew Allen, Oleg Shulepov, Andrew V. Hill, Ohad Bachar, Moshe Markowitz, Yaron Ish-Shalom, Ilan Sela, Amnon Manassen, Alexander Svizher, Maxim Khokhlov, Avi Abramov, Oleg Tsibulevsky, Daniel Kandel, Mark Ghinovker
  • Publication number: 20170016815
    Abstract: The system includes a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
    Type: Application
    Filed: July 22, 2016
    Publication date: January 19, 2017
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick A. Shaughnessy
  • Patent number: 9512985
    Abstract: The disclosure is directed to systems for providing illumination to a measurement head for optical metrology. In some embodiments of the disclosure, illumination beams from a plurality of illumination sources are combined to deliver illumination at one or more selected wavelengths to the measurement head. In some embodiments of the disclosure, intensity and/or spatial coherence of illumination delivered to the measurement head is controlled. In some embodiments of the disclosure, illumination at one or more selected wavelengths is delivered from a broadband illumination source configured for providing illumination at a continuous range of wavelengths.
    Type: Grant
    Filed: February 22, 2013
    Date of Patent: December 6, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Gregory R. Brady, Andrei V. Shchegrov, Lawrence D. Rotter, Derrick Shaughnessy, Anatoly Shchemelinin, Ilya Bezel, Muzammil A. Arain, Anatoly A. Vasiliev, James Andrew Allen, Oleg Shulepov, Andrew V. Hill, Ohad Bachar, Moshe Markowitz, Yaron Ish-Shalom, Ilan Sela, Amnon Manassen, Alexander Svizher, Maxim Khokhlov, Avi Abramov, Oleg Tsibulevsky, Daniel Kandel, Mark Ghinovker
  • Patent number: 9400246
    Abstract: The present invention may include a modulatable illumination source configured to illuminate a surface of a sample disposed on a sample stage, a detector configured to detect illumination emanating from a surface of the sample, illumination optics configured to direct illumination from the modulatable illumination source to the surface of the sample, collection optics configured to direct illumination from the surface of the sample to the detector, and a modulation control system communicatively coupled to the modulatable illumination source, wherein the modulation control system is configured to modulate a drive current of the modulatable illumination source at a selected modulation frequency suitable for generating illumination having a selected coherence feature length. In addition, the present invention includes the time-sequential interleaving of outputs of multiple light sources to generate periodic pulses trains for use in multi-wavelength time-sequential optical metrology.
    Type: Grant
    Filed: October 10, 2012
    Date of Patent: July 26, 2016
    Assignee: KLA-Tencor Corporation
    Inventors: Andrei V. Shchegrov, Lawrence D. Rotter, David Y. Wang, Andrei Veldman, Kevin Peterlinz, Gregory Brady, Derrick Shaughnessy
  • Patent number: 8860937
    Abstract: Various metrology systems and methods for high aspect ratio and large lateral dimension structures are provided. One method includes directing light to one or more structures formed on a wafer. The light includes ultraviolet light, visible light, and infrared light. The one or more structures include at least one high aspect ratio structure or at least one large lateral dimension structure. The method also includes generating output responsive to light from the one or more structures due to the light directed to the one or more structures. In addition, the method includes determining one or more characteristics of the one or more structures using the output.
    Type: Grant
    Filed: January 16, 2013
    Date of Patent: October 14, 2014
    Assignee: KLA-Tencor Corp.
    Inventors: Thaddeus Gerard Dziura, Xuefeng Liu, David Y. Wang, Jonathan Madsen, Alexander Kuznetsov, Johannes D. de Veer, Shankar Krishnan, Derrick Shaughnessy, Andrei Shchegrov
  • Patent number: 8804106
    Abstract: The disclosure is directed to nondestructive systems and methods for simultaneously measuring active carrier concentration and thickness of one or more doped semiconductor layers. Reflectance signals may be defined as functions of active carrier concentration and thickness varying over different wavelengths and over different incidence angles of analyzing illumination reflected off the surface of an analyzed sample. Systems and methods are provided for collecting a plurality of reflectance signals having either different wavelengths or different incidence angle ranges to extract active carrier density and thickness of one or more doped semiconductor layers.
    Type: Grant
    Filed: June 22, 2012
    Date of Patent: August 12, 2014
    Assignee: KLA-Tencor Corporation
    Inventors: NanChang Zhu, Derrick Shaughnessy, Houssam Chouaib, Yaolei Zheng, Lu Yu, Jianli Cui, Jin An, Jianou Shi
  • Publication number: 20130003050
    Abstract: The disclosure is directed to nondestructive systems and methods for simultaneously measuring active carrier concentration and thickness of one or more doped semiconductor layers. Reflectance signals may be defined as functions of active carrier concentration and thickness varying over different wavelengths and over different incidence angles of analyzing illumination reflected off the surface of an analyzed sample. Systems and methods are provided for collecting a plurality of reflectance signals having either different wavelengths or different incidence angle ranges to extract active carrier density and thickness of one or more doped semiconductor layers.
    Type: Application
    Filed: June 22, 2012
    Publication date: January 3, 2013
    Applicant: KLA-TENCOR CORPORATION
    Inventors: NanChang Zhu, Derrick Shaughnessy, Houssam Chouaib, Yaolei Zheng, Lu Yu, Jianli Cui, Jin An, Jianou Shi
  • Patent number: 8111399
    Abstract: A device and methods for performing a photothermal measurement and relaxation compensation of a sample are disclosed. The device may include a probe beam source, a pump beam source, a sample, and a detector array. A method may include adjusting an intensity modulated pump beam power, adjusting a probe beam power to increase a response measurement location temperature and increase a modulated optical reflectance signal, directing the intensity modulated pump beam and the probe beam along a measurement path to a response measurement location on a sample for periodically exciting a region on the sample, detecting a reflected portion of the probe beam, and calculating an implantation dose.
    Type: Grant
    Filed: June 30, 2009
    Date of Patent: February 7, 2012
    Assignee: KLA-Tencor Corporation
    Inventors: Lawrence D. Rotter, David Y. Wang, Derrick Shaughnessy, Mark Senko
  • Publication number: 20100328670
    Abstract: A device and methods for performing a photothermal measurement and relaxation compensation of a sample are disclosed. The device may include a probe beam source, a pump beam source, a sample, and a detector array. A method may include adjusting an intensity modulated pump beam power, adjusting a probe beam power to increase a response measurement location temperature and increase a modulated optical reflectance signal, directing the intensity modulated pump beam and the probe beam along a measurement path to a response measurement location on a sample for periodically exciting a region on the sample, detecting a reflected portion of the probe beam, and calculating an implantation dose.
    Type: Application
    Filed: June 30, 2009
    Publication date: December 30, 2010
    Applicant: KLA-TENCOR TECHNOLOGIES CORPORATION
    Inventors: Lawrence D. Rotter, David Y. Wang, Derrick Shaughnessy, Mark Senko
  • Patent number: 7045786
    Abstract: The present invention relates to metrologic methodologies and instrumentation, in particular laser-frequency domain infrared photocarrier radiometry (PCR), for contamination and defect mapping and measuring electronic properties in industrial Si wafers, devices and other semiconducting materials. In particular the invention relates to the measurement of carrier recombination lifetime, ?, carrier diffusivity, D, surface recombination velocities, S, carrier diffusion lengths, L, and carrier mobility, ?, as well as heavy metal contamination mapping, ion implantation mapping over a wide range of dose and energy, and determination of the concentration of mobile impurities in SiO2 layers on semiconductor substrates. The present invention provides a method and complete photocarrier radiometric apparatus comprising novel signal generation and analysis techniques (carrier-wave interferometry) as well as novel instrumental hardware configurations based on the physical principle of photocarrier radiometry.
    Type: Grant
    Filed: March 11, 2004
    Date of Patent: May 16, 2006
    Inventors: Andreas Mandelis, Derrick Shaughnessy, Jerias Alves Batista, Jose A. Garcia