Patents by Inventor Devendra Gorhe

Devendra Gorhe has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220331115
    Abstract: Methods are provided for modifying a porous surface of an implantable medical device by subjecting the porous surface to a modified micro-arc oxidation process to improve the ability of the medical device to resist microbial growth, to improve the ability of the medical device to adsorb a bioactive agent or a therapeutic agent, and to improve tissue in-growth and tissue on-growth of the implantable medical device.
    Type: Application
    Filed: June 29, 2022
    Publication date: October 20, 2022
    Inventors: Devendra Gorhe, Donald L. Yakimicki, Philip McBride
  • Patent number: 11395740
    Abstract: Methods are provided for modifying a porous surface of an implantable medical device by subjecting the porous surface to a modified micro-arc oxidation process to improve the ability of the medical device to resist microbial growth, to improve the ability of the medical device to adsorb a bioactive agent or a therapeutic agent, and to improve tissue in-growth and tissue on-growth of the implantable medical device.
    Type: Grant
    Filed: January 18, 2021
    Date of Patent: July 26, 2022
    Assignee: Biomet Manufacturing, LLC
    Inventors: Devendra Gorhe, Donald L. Yakimicki, Philip McBride
  • Publication number: 20210186703
    Abstract: Methods are provided for modifying a porous surface of an implantable medical device by subjecting the porous surface to a modified micro-arc oxidation process to improve the ability of the medical device to resist microbial growth, to improve the ability of the medical device to adsorb a bioactive agent or a therapeutic agent, and to improve tissue in-growth and tissue on-growth of the implantable medical device.
    Type: Application
    Filed: January 18, 2021
    Publication date: June 24, 2021
    Inventors: Devendra Gorhe, Donald L. Yakimicki, Philip McBride
  • Patent number: 10893944
    Abstract: Methods are provided for modifying a porous surface of an implantable medical device by subjecting the porous surface to a modified micro-arc oxidation process to improve the ability of the medical device to resist microbial growth, to improve the ability of the medical device to adsorb a bioactive agent or a therapeutic agent, and to improve tissue in-growth and tissue on-growth of the implantable medical device.
    Type: Grant
    Filed: March 29, 2018
    Date of Patent: January 19, 2021
    Assignee: Biomet Manufacturing, LLC
    Inventors: Devendra Gorhe, Donald L. Yakimicki, Philip McBride
  • Publication number: 20180280143
    Abstract: Methods are provided for modifying a porous surface of an implantable medical device by subjecting the porous surface to a modified micro-arc oxidation process to improve the ability of the medical device to resist microbial growth, to improve the ability of the medical device to adsorb a bioactive agent or a therapeutic agent, and to improve tissue in-growth and tissue on-growth of the implantable medical device.
    Type: Application
    Filed: March 29, 2018
    Publication date: October 4, 2018
    Inventors: Devendra Gorhe, Donald L. Yakimicki, Philip McBride
  • Publication number: 20150014397
    Abstract: Methods for bonding a porous tantalum structure to a substrate are provided. The method includes placing a compressible or porous interlayer between a porous tantalum structure and a cobalt or cobalt-chromium substrate to form an assembly. The interlayer comprising a metal or metal alloy that has solid state solubility with both the substrate and the porous tantalum structure. Heat and pressure are applied to the assembly to achieve solid state diffusion between the substrate and the interlayer and the between the porous tantalum structure and the interlayer.
    Type: Application
    Filed: September 29, 2014
    Publication date: January 15, 2015
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Clarence M. Panchison, David M. Miller, Joel G. Scrafton, Casey Harmon
  • Publication number: 20140069990
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Application
    Filed: November 13, 2013
    Publication date: March 13, 2014
    Applicant: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
  • Patent number: 8608049
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: October 10, 2007
    Date of Patent: December 17, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen
  • Patent number: 8602290
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Grant
    Filed: April 22, 2011
    Date of Patent: December 10, 2013
    Assignee: Zimmer, Inc.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Joel G. Scrafton, Casey Harmon
  • Publication number: 20110233263
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Application
    Filed: April 22, 2011
    Publication date: September 29, 2011
    Applicant: ZIMMER, INC.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Joel G. Scrafton, Casey Harmon
  • Publication number: 20110230973
    Abstract: Methods for bonding a porous tantalum structure to a substrate are provided. The method includes placing a compressible or porous interlayer between a porous tantalum structure and a cobalt or cobalt-chromium substrate to form an assembly. The interlayer comprising a metal or metal alloy that has solid state solubility with both the substrate and the porous tantalum structure. Heat and pressure are applied to the assembly to achieve solid state diffusion between the substrate and the interlayer and the between the porous tantalum structure and the interlayer.
    Type: Application
    Filed: April 22, 2011
    Publication date: September 22, 2011
    Applicant: ZIMMER, INC.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen, Clarence M. Panchison, David M. Miller, Joel G. Scrafton, Casey Harmon
  • Publication number: 20090098310
    Abstract: A method for bonding a porous tantalum structure to a substrate is provided. The method comprises providing a substrate comprising cobalt or a cobalt-chromium alloy; an interlayer consisting essentially of at least one of hafnium, manganese, niobium, palladium, zirconium, titanium, or alloys or combinations thereof; and a porous tantalum structure. Heat and pressure are applied to the substrate, the interlayer, and the porous tantalum structure to achieve solid-state diffusion between the substrate and the interlayer and between the interlayer and the porous tantalum structure.
    Type: Application
    Filed: October 10, 2007
    Publication date: April 16, 2009
    Applicant: ZIMMER, INC.
    Inventors: Gregory M. Hippensteel, Lawrence F. Peek, Jeffrey P. Anderson, Devendra Gorhe, Steve M. Allen