Patents by Inventor Devin L. Kautz

Devin L. Kautz has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230296726
    Abstract: A method for calibrating a patrol vehicle speed, comprising initiating a calibration cycle at a speed detection radar unit mounted in a vehicle, operating the vehicle to generate a vehicle speed signal using the speed detection radar unit and exiting the calibration cycle if the vehicle speed signal matches an observed speed from an independent source signal.
    Type: Application
    Filed: March 17, 2023
    Publication date: September 21, 2023
    Applicant: Applied Concepts, Inc.
    Inventors: Devin L. Kautz, Alan Mead, Stanley A. Walker, John Miller
  • Patent number: 10705105
    Abstract: A system determines absolute speed of a moving object. In AM, time of flight data over a time period is processed to determine ranges between the system and the moving object. The system performs linear regression analysis on the collected ranges to calculate the radial velocity. The system measures angular swivel rate of the system to determine tangential velocity. From the radial velocity and tangential velocity, the absolute speed can be calculated by taking the square root of the addition of the square of the radial velocity and square of the tangential velocity. In MM, the system calculates object distance, i.e. distance in the direction of travel, by subtracting the square of a pre-determined perpendicular distance L, perpendicular to the direction of travel, from a square of line-of-sight distance R, and taking square root of the result. Absolute speed is determined by calculating the slope of modified linear regression curve-fit.
    Type: Grant
    Filed: October 25, 2017
    Date of Patent: July 7, 2020
    Assignee: APPLIED CONCEPTS, INC.
    Inventors: Mahendra Mandava, Robert S. Gammenthaler, Russell D. Kautz, Steven F. Hocker, Robert E. Jordan, Devin L. Kautz
  • Publication number: 20190025336
    Abstract: A system determines absolute speed of a moving object. In AM, time of flight data over a time period is processed to determine ranges between the system and the moving object. The system performs linear regression analysis on the collected ranges to calculate the radial velocity. The system measures angular swivel rate of the system to determine tangential velocity. From the radial velocity and tangential velocity, the absolute speed can be calculated by taking the square root of the addition of the square of the radial velocity and square of the tangential velocity. In MM, the system calculates object distance, i.e. distance in the direction of travel, by subtracting the square of a pre-determined perpendicular distance L, perpendicular to the direction of travel, from a square of line-of-sight distance R, and taking square root of the result. Absolute speed is determined by calculating the slope of modified linear regression curve-fit.
    Type: Application
    Filed: October 25, 2017
    Publication date: January 24, 2019
    Inventors: Mahendra Mandava, Robert S. Gammenthaler, Russell D. Kautz, Steven F. Hocker, Robert E. Jordan, Devin L. Kautz