Patents by Inventor Devin McCombie

Devin McCombie has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11963746
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Grant
    Filed: August 23, 2021
    Date of Patent: April 23, 2024
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Henk Visser, II, Robert Kenneth Hunt, Devin McCombie, Marshal Singh Dhillon, Matthew J. Banet
  • Patent number: 11918321
    Abstract: The invention provides a body-worn monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling). The body-worn monitor processes this information to minimize corruption of the vital signs by motion-related artifacts. A software framework generates alarms/alerts based on threshold values that are either preset or determined in real time. The framework additionally includes a series of ‘heuristic’ rules that take the patient's activity state and motion into account, and process the vital signs accordingly. These rules, for example, indicate that a walking patient is likely breathing and has a regular heart rate, even if their motion-corrupted vital signs suggest otherwise.
    Type: Grant
    Filed: April 26, 2021
    Date of Patent: March 5, 2024
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Matt Banet, Marshal Dhillon, Jim Moon
  • Patent number: 11896350
    Abstract: A system and method for measuring vital signs and motion from a patient comprising a plurality of sensors, each comprising a processor and analog-to-digital converter configured to generate the physiologic data waveform(s) from the sensor as synchronized, separately resolvable digital data comprising a header indicating the sensor from which the digital data originates, and to transmit the physiologic data waveform(s) to a processing system via a cable comprising a terminal connector that reversibly mates with one of a plurality functionally equivalent of connectors to operably connect the sensor to the processing system. The processing system receive sthe physiologic data waveforms and determines therefrom one or more vital signs for the individual, which are transmitted to a remote vital sign monitor.
    Type: Grant
    Filed: June 17, 2019
    Date of Patent: February 13, 2024
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Devin McCombie, Marshal Dhillon, Matthew Banet
  • Publication number: 20230284911
    Abstract: The invention provides methods and systems for continuous noninvasive measurement of vital signs such as blood pressure (cNIBP) based on pulse arrival time (PAT). The invention uses a body-worn monitor that recursively determines an estimated PEP for use in correcting PAT measurements by detecting low frequency vibrations created during a cardiac cycle, and a state estimator algorithm to identify signals indicative of aortic valve opening in those measured vibrations.
    Type: Application
    Filed: May 15, 2023
    Publication date: September 14, 2023
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Devin McCOMBIE, Guanqun ZHANG, Isaac HENRY
  • Publication number: 20230225633
    Abstract: The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.
    Type: Application
    Filed: March 20, 2023
    Publication date: July 20, 2023
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Devin McCombie, Matt Banet, Marshal Dhillon
  • Publication number: 20230210384
    Abstract: The invention provides a multi-sensor system that uses an algorithm based on adaptive filtering to monitor a patient's respiratory rate. The system features a first sensor selected from the following group: i) an impedance pneumography sensor featuring at least two electrodes and a processing circuit configured to measure an impedance pneumography signal; ii) an ECG sensor featuring at least two electrodes and an ECG processing circuit configured to measure an ECG signal; and iii) a PPG sensor featuring a light source, photodetector, and PPG processing circuit configured to measure a PPG signal. Each of these sensors measures a time-dependent signal which is sensitive to respiratory rate and, during operation, is processed to determine an initial respiratory rate value. An adaptive digital filter is determined from the initial respiratory rate. The system features a second sensor (e.g.
    Type: Application
    Filed: December 27, 2022
    Publication date: July 6, 2023
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Matthew BANET, Devin McCOMBIE, Marshal DHILLON
  • Publication number: 20230200663
    Abstract: The invention provides a system and method for measuring vital signs and motion from a patient. The system features: (i) first and second sensors configured to independently generate time-dependent waveforms indicative of one or more contractile properties of the patient's heart; and (ii) at least three motion-detecting sensors positioned on the forearm, upper arm, and a body location other than the forearm or upper arm of the patient. Each motion-detecting sensor generates at least one time-dependent motion waveform indicative of motion of the location on the patient's body to which it is affixed. A processing component receives the time-dependent waveforms generated by the different sensors and processes them to determine: (i) a pulse transit time calculated using a time difference between features in two separate time-dependent waveforms, (ii) a blood pressure value calculated from the time difference, and (iii) a motion parameter calculated from at least one motion waveform.
    Type: Application
    Filed: February 27, 2023
    Publication date: June 29, 2023
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Marshal Dhillon, Matt Banet
  • Patent number: 11647910
    Abstract: The invention provides methods and systems for continuous noninvasive measurement of vital signs such as blood pressure (cNIBP) based on pulse arrival time (PAT). The invention uses a body-worn monitor that recursively determines an estimated PEP for use in correcting PAT measurements by detecting low frequency vibrations created during a cardiac cycle, and a state estimator algorithm to identify signals indicative of aortic valve opening in those measured vibrations.
    Type: Grant
    Filed: December 7, 2020
    Date of Patent: May 16, 2023
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Guanqun Zhang, Isaac Henry
  • Patent number: 11638533
    Abstract: The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.
    Type: Grant
    Filed: October 26, 2020
    Date of Patent: May 2, 2023
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Jim Moon, Devin McCombie, Marshal Dhillon, Matthew Banet
  • Patent number: 11607152
    Abstract: The invention provides a body-worn system that continuously measures pulse oximetry and blood pressure, along with motion, posture, and activity level, from an ambulatory patient. The system features an oximetry probe that comfortably clips to the base of the patient's thumb, thereby freeing up their fingers for conventional activities in a hospital, such as reading and eating. The probe secures to the thumb and measures time-dependent signals corresponding to LEDs operating near 660 and 905 nm. Analog versions of these signals pass through a low-profile cable to a wrist-worn transceiver that encloses a processing unit. Also within the wrist-worn transceiver is an accelerometer, a wireless system that sends information through a network to a remote receiver, e.g. a computer located in a central nursing station.
    Type: Grant
    Filed: November 9, 2011
    Date of Patent: March 21, 2023
    Inventors: Jim Moon, Devin McCombie, Matt Banet, Marshal Dhillon
  • Patent number: 11589754
    Abstract: The invention provides a system and method for measuring vital signs (e.g. SYS, DIA, SpO2, heart rate, and respiratory rate) and motion (e.g. activity level, posture, degree of motion, and arm height) from a patient. The system features: (i) first and second sensors configured to independently generate time-dependent waveforms indicative of one or more contractile properties of the patient's heart; and (ii) at least three motion-detecting sensors positioned on the forearm, upper arm, and a body location other than the forearm or upper arm of the patient. Each motion-detecting sensor generates at least one time-dependent motion waveform indicative of motion of the location on the patient's body to which it is affixed.
    Type: Grant
    Filed: May 20, 2009
    Date of Patent: February 28, 2023
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Marshal Dhillon, Matt Banet
  • Publication number: 20220378356
    Abstract: Methods and systems methods for continuously monitoring a patient for cardiac electrical abnormalities including atrial fibrillation, asystole, ventricular fibrillation and tachycardia.
    Type: Application
    Filed: August 8, 2022
    Publication date: December 1, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Isaac HENRY, Devin McCOMBIE, Nicholas ELMSCHIG
  • Publication number: 20220248961
    Abstract: The invention provides a body-worn monitor featuring a processing system that receives a digital data stream from an ECG system. A cable houses the ECG system at one terminal end, and plugs into the processing system, which is worn on the patient's wrist like a conventional wristwatch. The ECG system features: i) a connecting portion connected to multiple electrodes worn by the patient; ii) a differential amplifier that receives electrical signals from each electrode and process them to generate an analog ECG waveform; iii) an analog-to-digital converter that converts the analog ECG waveform into a digital ECG waveform; and iv) a transceiver that transmits a digital data stream representing the digital ECG waveform (or information calculated from the waveform) through the cable and to the processing system. Different ECG systems, typically featuring three, five, or twelve electrodes, can be interchanged with one another.
    Type: Application
    Filed: August 23, 2021
    Publication date: August 11, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET
  • Patent number: 11406314
    Abstract: Methods and systems methods for continuously monitoring a patient for cardiac electrical abnormalities including atrial fibrillation, asystole, ventricular fibrillation and tachycardia.
    Type: Grant
    Filed: September 24, 2019
    Date of Patent: August 9, 2022
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Isaac Henry, Devin McCombie, Nicholas Elmschig
  • Patent number: 11330988
    Abstract: The present invention provides a technique for continuous measurement of blood pressure based on pulse transit time and which does not require any external calibration. This technique, referred to herein as the ‘Composite Method’, is carried out with a body-worn monitor that measures blood pressure and other vital signs, and wirelessly transmits them to a remote monitor. A network of body-worn sensors, typically placed on the patient's right arm and chest, connect to the body-worn monitor and measure time-dependent ECG, PPG, accelerometer, and pressure waveforms. The disposable sensors can include a cuff that features an inflatable bladder coupled to a pressure sensor, three or more electrical sensors (e.g. electrodes), three or more accelerometers, a temperature sensor, and an optical sensor (e.g., a light source and photodiode) attached to the patient's thumb.
    Type: Grant
    Filed: July 1, 2019
    Date of Patent: May 17, 2022
    Inventors: Matthew Banet, Marshal Dhillon, Devin McCombie
  • Patent number: 11317817
    Abstract: The invention provides a system and method for measuring vital signs (e.g. SYS, DIA, SpO2, heart rate, and respiratory rate) and motion (e.g. activity level, posture, degree of motion, and arm height) from a patient. The system features: first and second sensors configured to independently generate time-dependent waveforms indicative of one or more contractile properties of the patient's heart; and a cuff-based oscillometric module. A processing component, typically worn on the patient's body and featuring a microprocessor, receives the time-dependent waveforms generated by the different sensors and processes them to determine patient-specific calibration values for use in a continuous blood pressure measurement based on pulse wave velocity (PWV).
    Type: Grant
    Filed: June 25, 2018
    Date of Patent: May 3, 2022
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Devin McCombie, Guanqun Zhang
  • Publication number: 20220110575
    Abstract: A method and body-worn monitoring system for continuous fiducial point determination in SCG and ECG signals.
    Type: Application
    Filed: October 13, 2021
    Publication date: April 14, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Mohsen NAJI, Devin McCOMBIE
  • Patent number: 11253169
    Abstract: The invention provides a multi-sensor system that uses an algorithm based on adaptive filtering to monitor a patient's respiratory rate. The system features a first sensor which is selected from the group consisting of an impedance pneumography sensor, an ECG sensor, a PPG sensor, and a motion sensor (e.g., an accelerometer) configured to attach to the patient's torso and measure therefrom a motion signal. The system further comprises (iii) a processing system, configured to operably connect to the first and motion sensors, and to determine a respiration rate value by applying filter parameters obtained from the first sensor signals to the motion sensor signals.
    Type: Grant
    Filed: November 12, 2018
    Date of Patent: February 22, 2022
    Assignee: SOTERA WIRELESS, INC.
    Inventors: Matthew Banet, Devin McCombie, Marshal Dhillon
  • Publication number: 20220031246
    Abstract: The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms/alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
    Type: Application
    Filed: October 14, 2021
    Publication date: February 3, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET
  • Publication number: 20220015704
    Abstract: The invention provides a body-worn vital sign monitor that measures a patient's vital signs (e.g. blood pressure, SpO2, heart rate, respiratory rate, and temperature) while simultaneously characterizing their activity state (e.g. resting, walking, convulsing, falling) and posture (upright, supine). The monitor processes this information to minimize corruption of the vital signs and associated alarms/alerts by motion-related artifacts. It also features a graphical user interface (GUI) rendered on a touchpanel display that facilitates a number of features to simplify and improve patient monitoring and safety in both the hospital and home.
    Type: Application
    Filed: October 1, 2021
    Publication date: January 20, 2022
    Applicant: SOTERA WIRELESS, INC.
    Inventors: Jim MOON, Henk VISSER, II, Robert Kenneth HUNT, Devin McCOMBIE, Marshal Singh DHILLON, Matthew J. BANET