Patents by Inventor Devin Merrill

Devin Merrill has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20250133811
    Abstract: Self-aligned gate endcap (SAGE) architectures with improved caps, and methods of fabricating self-aligned gate endcap (SAGE) architectures with improved caps, are described. In an example, an integrated circuit structure includes a first gate structure over a first semiconductor fin. A second gate structure is over a second semiconductor fin. A gate endcap isolation structure is between the first gate structure and the second gate structure. The gate endcap isolation structure has a higher-k dielectric cap layer on a lower-k dielectric wall. The higher-k dielectric cap layer includes hafnium and oxygen and has 70% or greater monoclinic crystallinity.
    Type: Application
    Filed: December 23, 2024
    Publication date: April 24, 2025
    Inventors: Christine RADLINGER, Tongtawee WACHARASINDHU, Andre BARAN, Kiran CHIKKADI, Devin MERRILL, Nilesh DENDGE, David J. TOWNER, Christopher KENYON
  • Publication number: 20240347618
    Abstract: Self-aligned gate endcap (SAGE) architectures with improved caps, and methods of fabricating self-aligned gate endcap (SAGE) architectures with improved caps, are described. In an example, an integrated circuit structure includes a first gate structure over a first semiconductor fin. A second gate structure is over a second semiconductor fin. A gate endcap isolation structure is between the first gate structure and the second gate structure. The gate endcap isolation structure has a higher-k dielectric cap layer on a lower-k dielectric wall. The higher-k dielectric cap layer includes hafnium and oxygen and has 70% or greater monoclinic crystallinity.
    Type: Application
    Filed: June 26, 2024
    Publication date: October 17, 2024
    Inventors: Christine RADLINGER, Tongtawee WACHARASINDHU, Andre BARAN, Kiran CHIKKADI, Devin MERRILL, Nilesh DENDGE, David J. TOWNER, Christopher KENYON
  • Publication number: 20240258427
    Abstract: Integrated circuit structures having source or drain structures and germanium N-channels are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion, the upper fin portion including germanium. A gate stack is over the upper fin portion of the fin. A first source or drain structure includes an epitaxial structure embedded in the fin at a first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at a second side of the gate stack. Each epitaxial structure includes a first semiconductor layer in contact with the upper fin portion, and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer comprises silicon, germanium and phosphorous, and the second semiconductor layer comprises silicon and phosphorous.
    Type: Application
    Filed: March 14, 2024
    Publication date: August 1, 2024
    Inventors: Ryan KEECH, Benjamin CHU-KUNG, Subrina RAFIQUE, Devin MERRILL, Ashish AGRAWAL, Harold KENNEL, Yang CAO, Dipanjan BASU, Jessica TORRES, Anand MURTHY
  • Patent number: 11973143
    Abstract: Integrated circuit structures having source or drain structures and germanium N-channels are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion, the upper fin portion including germanium. A gate stack is over the upper fin portion of the fin. A first source or drain structure includes an epitaxial structure embedded in the fin at a first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at a second side of the gate stack. Each epitaxial structure includes a first semiconductor layer in contact with the upper fin portion, and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer comprises silicon, germanium and phosphorous, and the second semiconductor layer comprises silicon and phosphorous.
    Type: Grant
    Filed: March 28, 2019
    Date of Patent: April 30, 2024
    Assignee: Intel Corporation
    Inventors: Ryan Keech, Benjamin Chu-Kung, Subrina Rafique, Devin Merrill, Ashish Agrawal, Harold Kennel, Yang Cao, Dipanjan Basu, Jessica Torres, Anand Murthy
  • Patent number: 11742407
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Grant
    Filed: December 2, 2019
    Date of Patent: August 29, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Ashish Verma Penumatcha, Sou-Chi Chang, Devin Merrill, I-Cheng Tung, Nazila Haratipour, Jack T. Kavalieros, Ian A. Young, Matthew V. Metz, Uygar E. Avci, Chia-Ching Lin, Owen Loh, Shriram Shivaraman, Eric Charles Mattson
  • Publication number: 20230197826
    Abstract: Self-aligned gate endcap (SAGE) architectures with improved caps, and methods of fabricating self-aligned gate endcap (SAGE) architectures with improved caps, are described. In an example, an integrated circuit structure includes a first gate structure over a first semiconductor fin. A second gate structure is over a second semiconductor fin. A gate endcap isolation structure is between the first gate structure and the second gate structure. The gate endcap isolation structure has a higher-k dielectric cap layer on a lower-k dielectric wall. The higher-k dielectric cap layer includes hafnium and oxygen and has 70% or greater monoclinic crystallinity.
    Type: Application
    Filed: December 21, 2021
    Publication date: June 22, 2023
    Inventors: Christine RADLINGER, Tongtawee WACHARASINDHU, Andre BARAN, Kiran CHIKKADI, Devin MERRILL, Nilesh DENDGE, David J. TOWNER, Christopher KENYON
  • Patent number: 11616130
    Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
    Type: Grant
    Filed: March 25, 2019
    Date of Patent: March 28, 2023
    Assignee: Intel Corporation
    Inventors: Seung Hoon Sung, Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Devin Merrill, Ashish Verma Penumatcha, Chia-Ching Lin, Owen Loh
  • Publication number: 20220199619
    Abstract: A complementary metal oxide semiconductor (CMOS) transistor includes a first transistor with a first gate dielectric layer above a first channel, where the first gate dielectric layer includes Hf1-xZxO2, where 0.33<x<0.5. The first transistor further includes a first gate electrode on the first gate dielectric layer and a first source region and a first drain region on opposite sides of the first gate electrode. The CMOS transistor further includes a second transistor adjacent to the first transistor. The second transistor includes a second gate dielectric layer above a second channel, where the second gate dielectric layer includes Hf1-xZxO2, where 0.5<x<0.99, a second gate electrode on the second gate dielectric layer and a second source region and a second drain region on opposite sides of the second gate electrode.
    Type: Application
    Filed: December 23, 2020
    Publication date: June 23, 2022
    Applicant: Intel Corporation
    Inventors: Ashish Verma Penumatcha, Seung Hoon Sung, Jack Kavalieros, Uygar Avci, Tristan Tronic, Shriram Shivaraman, Devin Merrill, Tobias Brown-Heft, Kirby Maxey, Matthew Metz, Ian Young
  • Publication number: 20210167182
    Abstract: A integrated circuit structure comprises a fin extending from a substrate. The fin comprises source and drain regions and a channel region between the source and drain regions. A multilayer high-k gate dielectric stack comprises at least a first high-k material and a second high-k material, the first high-k material extending conformally over the fin over the channel region, and the second high-k material conformal to the first high-k material, wherein either the first high-k material or the second high-k material has a modified material property different from the other high-k material, wherein the modified material property comprises at least one of ferroelectricity, crystalline phase, texturing, ordering orientation of the crystalline phase or texturing to a specific crystalline direction or plane, strain, surface roughness, and lattice constant and combinations thereof. A gate electrode ix over and on a topmost high-k material in the multilayer high-k gate dielectric stack.
    Type: Application
    Filed: December 2, 2019
    Publication date: June 3, 2021
    Inventors: Seung Hoon SUNG, Ashish Verma PENUMATCHA, Sou-Chi CHANG, Devin MERRILL, I-Cheng TUNG, Nazila HARATIPOUR, Jack T. KAVALIEROS, Ian A. YOUNG, Matthew V. METZ, Uygar E. AVCI, Chia-Ching LIN, Owen LOH, Shriram SHIVARAMAN, Eric Charles MATTSON
  • Publication number: 20200312976
    Abstract: Techniques and mechanisms to provide electrical insulation between a gate and a channel region of a non-planar circuit device. In an embodiment, the gate structure, and insulation spacers at opposite respective sides of the gate structure, each extend over a semiconductor fin structure. In a region between the insulation spacers, a first dielectric layer extends conformally over the fin, and a second dielectric layer adjoins and extends conformally over the first dielectric layer. A third dielectric layer, adjoining the second dielectric layer and the insulation spacers, extends under the gate structure. Of the first, second and third dielectric layers, the third dielectric layer is conformal to respective sidewalls of the insulation spacers. In another embodiment, the second dielectric layer is of dielectric constant which is greater than that of the first dielectric layer, and equal to or less than that of the third dielectric layer.
    Type: Application
    Filed: March 25, 2019
    Publication date: October 1, 2020
    Applicant: Intel Corporation
    Inventors: Seung Hoon Sung, Jack Kavalieros, Ian Young, Matthew Metz, Uygar Avci, Devin Merrill, Ashish Verma Penumatcha, Chia-Ching Lin, Owen Loh
  • Publication number: 20200313001
    Abstract: Integrated circuit structures having source or drain structures and germanium N-channels are described. In an example, an integrated circuit structure includes a fin having a lower fin portion and an upper fin portion, the upper fin portion including germanium. A gate stack is over the upper fin portion of the fin. A first source or drain structure includes an epitaxial structure embedded in the fin at a first side of the gate stack. A second source or drain structure includes an epitaxial structure embedded in the fin at a second side of the gate stack. Each epitaxial structure includes a first semiconductor layer in contact with the upper fin portion, and a second semiconductor layer on the first semiconductor layer. The first semiconductor layer comprises silicon, germanium and phosphorous, and the second semiconductor layer comprises silicon and phosphorous.
    Type: Application
    Filed: March 28, 2019
    Publication date: October 1, 2020
    Inventors: Ryan KEECH, Benjamin CHU-KUNG, Subrina RAFIQUE, Devin MERRILL, Ashish AGRAWAL, Harold KENNEL, Yang CAO, Dipanjan BASU, Jessica TORRES, Anand MURTHY