Patents by Inventor Dewen Kong

Dewen Kong has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240113300
    Abstract: The present disclosure provides a modified binder for use in an electrochemical cell that cycles lithium ions. The modified binder includes one or more agglomerates of polytetrafluoroethylene nanoparticles, where each of the polytetrafluoroethylene nanoparticles includes a polytetrafluoroethylene core and a polymeric shell that is disposed on exposed surfaces of the core. The polymeric shell can include a polymer selected from the group consisting of: polyethylene oxide, polyglycidyl methacrylate, polyvinylidene difluoride, fluoride-hexafluoropropylene, polypropylene oxide, polyacrylonitrile, polymethacrylonitrile, polymethyl methacrylate, derivatives and co-polymers, and combinations thereof, and in certain instances, also a humidity tolerant lithium salt.
    Type: Application
    Filed: November 28, 2022
    Publication date: April 4, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong LU, Meiyuan WU, Dewen KONG, Haijing LIU
  • Publication number: 20240100991
    Abstract: A battery system for a vehicle includes: first and second positive terminals and a negative terminal; switches; at least three strings of battery cells, each of the strings configured to, at different times be: connected to the first positive terminal via first ones of the switches; connected to the second positive terminal via second ones of the switches; and disconnected from both of the first and second positive terminals; and a switch control module configured to: identify one of a short circuit and an over voltage condition in a first voltage bus; when the one of the short circuit and the over voltage condition is identified, identify N of the strings of battery cells with the N lowest state of health values; and control switching of the switches and connect the identified N strings of battery cells to the first voltage bus.
    Type: Application
    Filed: July 10, 2023
    Publication date: March 28, 2024
    Inventors: Aaron B. Bloom, Dave G. Rich, Dewen Kong, Jingyuan Liu, Wing-Fai Ha
  • Publication number: 20240100955
    Abstract: A low-voltage mitigation and recovery system includes: an auxiliary power module that converts an output voltage of a power source of a vehicle to a charging voltage, the power source provides power to power a propulsion system of the vehicle; a contactor that supplies power from the power source to the auxiliary power module; a first control module that controls states of the auxiliary power module and the contactor. A second control module is integrated within a MODACS, monitors parameters of blocks of cells of the MODACS, and, based on at least one of the parameters: configures a switch network of the MODACS to disconnect a first set of blocks of the MODACS from loads and to connect or maintain connection of a second set of blocks of the MODACS to selected ones of the loads; and wakes up the first control module to jump start and recover the MODACS.
    Type: Application
    Filed: July 11, 2023
    Publication date: March 28, 2024
    Inventors: Aaron B. BLOOM, Dave G. Rich, Dewen Kong, Jingyuan Liu, Wing-Fai Ha
  • Patent number: 11936030
    Abstract: A method of manufacturing an electrode for an electrochemical cell includes providing an admixture including an electroactive material, a binder, and a solvent. The method further includes rolling the admixture to form a sheet and forming a multi-layer stack from the sheet. The method further includes forming an electrode film precursor by performing a plurality of sequential rollings, each including rolling the stack through a first gap. The plurality of sequential rollings includes first and second rollings. In the first rolling, the stack is in a first orientation. In the second rolling, the stack is in a second orientation different from the first orientation. The method further includes forming an electrode film by rolling the electrode film precursor through a second gap less than or equal to the first gap. The method further includes drying the electrode film to remove at least a portion of the solvent.
    Type: Grant
    Filed: December 1, 2021
    Date of Patent: March 19, 2024
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen Kong, Xiaochao Que, Meiyuan Wu, Haijing Liu, Xiaosong Huang, Mark W. Verbrugge
  • Publication number: 20240079544
    Abstract: A method for fabricating a dual-layer capacitive cabode electrode includes fabricating a first film including capacitive active material; fabricating a second film including cathode active material; hot jointing the first film and the second film to create a cabode film; and laminating the cabode film onto opposite sides of a current collector using conductive adhesive.
    Type: Application
    Filed: October 7, 2022
    Publication date: March 7, 2024
    Inventors: Dewen KONG, Meiyuan WU, Yong LU, Haijing LIU, Mark W. VERBRUGGE
  • Publication number: 20240059182
    Abstract: A battery system for a vehicle includes: a first positive terminal, a second positive terminal, and a negative terminal; switches; at least two battery modules each including at least three strings of battery cells that are configured to, at different times be: connected in series and to the first positive terminal via first ones of the switches; connected in parallel and to the second positive terminal via second ones of the switches; and disconnected from both of the first and second positive terminals; and a switch control module configured to, based on a derated state of the vehicle, adjust at least one of an upper limit for charging of the battery strings and a lower limit for discharging of the battery strings.
    Type: Application
    Filed: November 14, 2022
    Publication date: February 22, 2024
    Inventors: Dave G. RICH, Aaron B. BLOOM, Wing-Fai HA, Dewen KONG, Jingyuan LIU
  • Publication number: 20240055593
    Abstract: The present disclosure provides an electrochemical device that cycles lithium ions. The electrochemical device includes at least one first cell unit and at least one second cell unit. The at least one first cell unit includes a nickel-rich positive electroactive material. The nickel-rich positive electroactive material can be represented by: LiM1xM2yM3zM4(1-x-y-z)O2 where M1, M2, M3, and M4 are each a transition metal independently selected from the group consisting of: nickel, manganese, cobalt, aluminum, and combinations thereof, where 0?x?1, 0?y?1, and 0?z?1. The at least one second cell unit includes a phosphate-based positive electroactive material. The phosphate-based electroactive material can be selected from the group consisting of: lithium manganese iron phosphates (LiMnxFe1-xPO4, where 0?x?1) (LMFP), lithium vanadium oxygen phosphates (LixVOPO4, where 0?x?1), lithium vanadium phosphates, lithium vanadium fluorophosphates, and combinations thereof.
    Type: Application
    Filed: November 3, 2022
    Publication date: February 15, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Yong LU, Haijing LIU, Jingyuan LIU, Meiyuan WU, Dewen KONG
  • Publication number: 20240038996
    Abstract: A method of making a capacitor-assisted hybrid electrode for a lithium-ion electrochemical cell includes admixing a solvent, a cellulose-based dispersant, and a plurality of capacitive particles comprising carbon to form a dispersion. The cellulose-based dispersant forms hydrogen bonds with one or more carbonyl-groups on the capacitive particles comprising carbon. The dispersion is combined with an electroactive material, an electrically conductive material, and a binder to form a slurry. The slurry is applied to a current collector and solidified to form the capacitor-assisted hybrid electrode having a composite hybrid active layer on the current collector. Capacitor-assisted hybrid electrodes formed from such methods are also provided.
    Type: Application
    Filed: September 22, 2022
    Publication date: February 1, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen KONG, Meiyuan WU, Si CHEN, Haijing LIU
  • Publication number: 20240030552
    Abstract: An electrode assembly for an electrochemical cell that cycles lithium ions is provided. The electrode assembly includes one or more electroactive material layers including a plurality of electroactive material particles and a plurality of binder material fibers dispersed with the electroactive material particles. At least one electroactive material particle of the plurality may have a first protective layer coated thereon, and at least one binder material fiber of the plurality may have a second protective layer coated thereon. The first and second protective layers may be the same or different. The binder material fibers can include polytetrafluoroethylene (PTFE).
    Type: Application
    Filed: September 15, 2022
    Publication date: January 25, 2024
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen KONG, Qili SU, Meiyuan WU, Haijing LIU
  • Publication number: 20240012063
    Abstract: A state of health (SOH) based control system includes: a memory configured to store an algorithm including instructions for determining a SOH of a power source; and a control module configured to receive a voltage signal indicating a voltage of the power source and execute the instructions. The instructions include: determining a state of charge (SOC) of the power source; generating a differential signal based on a change in the voltage and a change in the state of charge; determining an inflection point and an end of charge point of the differential signal; determining the SOH of the power source based on the inflection point and the end of charge point; and performing at least one of a control operation or a countermeasure based on the SOH.
    Type: Application
    Filed: August 17, 2022
    Publication date: January 11, 2024
    Inventors: Jingyuan LIU, Dave G. RICH, Manjit SWAMI, Charles W. WAMPLER, II, Dewen KONG
  • Publication number: 20240014470
    Abstract: A battery cell comprises C electrodes each including a first current collector, first and second capacitive layers, and first and second active material layers. The first and second capacitive layers and the first and second active material layers are arranged on the first current collector. E anode electrodes include a second current collector and third and fourth active material layers arranged on the second current collector. E and C are integers greater than zero.
    Type: Application
    Filed: August 12, 2022
    Publication date: January 11, 2024
    Inventors: Dewen KONG, Jingyuan LIU, Haijing LIU, Dave G. RICH, Christian FAU
  • Publication number: 20230411685
    Abstract: The present disclosure provides an electrolyte layer for use in an electrochemical cell that cycles lithium ions. The electrolyte layer includes a porous film that defines a plurality of voids and includes a plurality of solid-state electrolyte particles and a plurality of polymeric fibrils that connect the solid-state electrolyte particles. The electrolyte layer also includes a gel polymeric electrolyte that at least partially fills the plurality of voids in the porous film. The porous film has a thickness greater than or equal to about 2 micrometers to less than or equal to about 100 micrometers, and a porosity greater than or equal to about 10 vol. % to less than or equal to about 50 vol. %. The a gel polymeric electrolyte fills greater than or equal to about 0.1% to less than or equal to about 150% of a total porosity of the porous film.
    Type: Application
    Filed: September 1, 2022
    Publication date: December 21, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Qili SU, Zhi LI, Dewen KONG, Haijing LIU
  • Publication number: 20230411687
    Abstract: A capacitor-assisted battery is provided. The capacitor-assisted battery includes an electrolyte system having a lithium-ion conducting component and one or more additives. The one or more additives include a first additive that includes 3-trimethylsilylphenylboronic acid, and a second additive that includes succinic anhydride. The capacitor-assisted battery includes an electrode having an electroactive material and a capacitor material. The electroactive material has a first coating defined thereon, and the capacitor material has a second coating defined thereon. The first and second coatings are defined by the first and second additives. The first coating is a substantially continuous that covers greater than or equal to about 80%, of a total exposed surface area of the electroactive material. The second coating is a discontinuous coating covers greater than or equal to about 20% to less than or equal to about 80% of a total exposed surface area of capacitor material.
    Type: Application
    Filed: July 29, 2022
    Publication date: December 21, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen KONG, Haijing LIU, Lidan XING
  • Patent number: 11843088
    Abstract: The present disclosure relates a temperature regulating system including an anisotropic material for use as a heating material or element (e.g., an active heater) and a cooling material or element (e.g., passive cooling) in a battery pack including one or more electrochemical cells. The temperature regulating system includes one or more temperature control elements. Each temperature control element is configured to be in a heat transfer relationship with one or more electrochemical cells so as to heat and/or cool the one or more electrochemical cells of the battery pack. Each temperature control element includes two or more structural elements and one or more anisotropic elements disposed between the two or more structural elements. The temperature control elements may be disposed between the electrochemical cells of the stack, disposed around the electrochemical cells of the stack, or both.
    Type: Grant
    Filed: August 4, 2021
    Date of Patent: December 12, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dave G. Rich, Saad Hasan, Lyall K Winger, Dewen Kong, Haijing Liu
  • Patent number: 11837704
    Abstract: An electrochemical device according to various aspects of the present disclosure includes an electrochemical cell and an inductor coil. The electrochemical cell includes a current collector. The current collector includes an electrically-conductive material. The inductor coil is configured to generate a magnetic field. The magnetic field is configured to induce an eddy current in the current collector to generate heat in the current collector. In various aspects, the present disclosure also provides a method of internally heating an electrochemical cell. In various aspects, the present disclosure also provides a method of controlling heating of an electrochemical cell.
    Type: Grant
    Filed: December 23, 2021
    Date of Patent: December 5, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Jingyuan Liu, Dewen Kong, Dave G. Rich, Haijing Liu, Lyall K. Winger, Mark W. Verbrugge
  • Publication number: 20230375628
    Abstract: A mixed chemistry battery is provided. The mixed chemistry battery includes a reference module having a first chemistry and a battery module having a second chemistry that is different that the first chemistry, the battery module is connected to the reference module in series. The mixed chemistry battery also includes a battery monitoring system configured to monitor an open circuit voltage of the reference module, an open circuit voltage of the battery module, and a current flow through the reference module and the battery module. The battery monitoring system is further configured to calculate a state-of-charge (SOC) and state-of-health (SOH) of the battery module based at least in part on a SOC of the reference module.
    Type: Application
    Filed: July 6, 2022
    Publication date: November 23, 2023
    Inventors: Chengwu Duan, Jian Yao, Dewen Kong, Jingyuan Liu
  • Publication number: 20230343951
    Abstract: An electrochemical cell includes a positive electrode including 90 wt. % to 98 wt. % of a cobalt-free electroactive material. represented by LiNixM1-xO2 (where M is manganese, aluminum, magnesium, zirconium, chromium, or a combination thereof and x?0.75), 0.05 wt. % to 3 wt. % a polytetrafluoroethylene (PTFE) binder having a molecular weight (MW) greater than or equal to about 6,000,000 u, and 1 wt. % to 5 wt. % of a first electronically conductive material. The electrochemical cell also includes a negative electrode including 90 wt. % to 98 wt. % of a graphite-containing negative electroactive material, 0.05 wt. % to 3 wt. % a polytetrafluoroethylene (PTFE) binder having a molecular weight (MW) greater than or equal to about 6,000,000 u, 0.05 wt. % to 2 wt. % of an ancillary binder, and 1 wt. % to 5 wt. % of a second electronically conductive material.
    Type: Application
    Filed: June 30, 2022
    Publication date: October 26, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen KONG, Haijing LIU
  • Patent number: 11784010
    Abstract: A capacitor-assisted electrode for an electrochemical cell that cycles lithium ions is provided. The capacitor-assisted electrode may include at least two electroactive materials disposed on one or more surfaces of a current collector. A first electroactive material of the at least two electroactive materials may have a first reversible specific capacity and forms a first electroactive material having a first press density. A second electroactive material of the at least two electroactive materials has a second reversible specific capacity and forms a second electroactive material having a second press density. The second reversible specific capacity may be different from the first reversible specific capacity. The second press density may be different from the first press density. One or more capacitor materials may be disposed on or intermingled with one or more of the at least two electroactive materials.
    Type: Grant
    Filed: November 15, 2019
    Date of Patent: October 10, 2023
    Assignee: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen Kong, Xiaochao Que, Meiyuan Wu, Si Chen, Haijing Liu, Mark W Verbrugge
  • Publication number: 20230307655
    Abstract: A negative electrode for an electrochemical cell that cycles lithium ions includes a particulate component embedded in a polymeric matrix component that comprises polytetrafluoroethylene. The particulate component includes a plurality of composite particles, with each of the composite particles having a core and a selective barrier layer disposed on a surface of the core. The core of each of the composite particles includes an electroactive negative electrode material. The selective barrier layer of each of the composite particles is formulated to prevent or inhibit electrochemical reactions from occurring between lithium stored in the electroactive negative electrode material of the core and the polytetrafluoroethylene in the polymeric matrix component.
    Type: Application
    Filed: May 6, 2022
    Publication date: September 28, 2023
    Applicant: GM GLOBAL TECHNOLOGY OPERATIONS LLC
    Inventors: Dewen KONG, Qili SU, Meiyuan WU, Haijing LIU
  • Publication number: 20230291037
    Abstract: A pouch-type, capacitor-assisted battery cell includes: N negative electrodes, where N is an integer greater than one, each of the N negative electrodes includes a first current collector, first particulate electrode material, and a first tab; P positive electrodes, where: P-M ones of the P positive electrodes include a second current collector, second particulate electrode material, and a second tab, M ones of the P positive electrodes include a third current collector, third particulate electrode material including activated carbon (AC) arranged on opposite sides of the third current collector, and a third tab, and P=N?1 and M=2; separators arranged between the N negative electrodes and the P positive electrodes; and a pouch enclosure surrounding the N negative electrodes, the P positive electrodes and the separators; where the M ones of the P positive electrodes are located approximately equidistant from a center of the P positive electrodes.
    Type: Application
    Filed: April 29, 2022
    Publication date: September 14, 2023
    Inventors: Dewen KONG, Dave G. Rich, Xiaochao Que, Haijing Liu