Patents by Inventor Deyu Li

Deyu Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11954806
    Abstract: A polar navigation window period assessment system based on three-dimensional visualization simulation of ship-ice interaction is provided in the present application, including a virtual reality interactive operation module for interacting with virtual reality scenes based on a virtual reality (VR) handle and a VR helmet; a three-dimensional virtual visualization integration module for observing the virtual reality scenes from a global perspective; a three-dimensional simulation module of the Arctic route environment for simulating a route environment scene; an Arctic navigation virtual scene module for establishing a navigation virtual scene; an Arctic navigation window period assessment module for assessing navigation window periods of the ship on different routes; a system storing and outputting module for storing interactive operation information, virtual reality scene information and window period assessment result information, and outputting them in form of curve diagrams and data tables.
    Type: Grant
    Filed: November 4, 2023
    Date of Patent: April 9, 2024
    Assignee: SHANGHAI JIAO TONG UNIVERSITY
    Inventors: Guijie Shi, Deyu Wang, Wenjun Luo, Chuntong Li, Jiaqi Jiang
  • Patent number: 11630317
    Abstract: A collimator includes a front lens sleeve, a clamping groove disposed on the front lens sleeve, a linking sleeve fastened on the clamping groove, a snapping groove disposed on the linking sleeve distal the front lens sleeve, a connection sleeve slidably connected to the snapping groove, a constraint sleeve disposed on the snapping groove, and a limit groove disposed on an inner surface of the constraint sleeve. The components cooperate with each other. The test chart is tilted relative to the optical axis of the lens and makes the test chart distributed at different distances along the axis. When using the camera to shoot the collimator, the clarity of different components reflects the relative focus position of the camera so as to detect the vehicle mounted camera.
    Type: Grant
    Filed: October 13, 2022
    Date of Patent: April 18, 2023
    Assignee: Shenzhen General Core Optoelectronics Co., Ltd.
    Inventors: Zhongfei Chen, Minglin He, Shuaitian Jiang, Jianzhi Song, Deyu Li
  • Publication number: 20230056510
    Abstract: A collimator includes a front lens sleeve, a clamping groove disposed on the front lens sleeve, a linking sleeve fastened on the clamping groove, a snapping groove disposed on the linking sleeve distal the front lens sleeve, a connection sleeve slidably connected to the snapping groove, a constraint sleeve disposed on the snapping groove, and a limit groove disposed on an inner surface of the constraint sleeve. The components cooperate with each other. The test chart is tilted relative to the optical axis of the lens and makes the test chart distributed at different distances along the axis. When using the camera to shoot the collimator, the clarity of different components reflects the relative focus position of the camera so as to detect the vehicle mounted camera.
    Type: Application
    Filed: October 13, 2022
    Publication date: February 23, 2023
    Inventors: Zhongfei Chen, Minglin He, Shuaitian Jiang, Jianzhi Song, Deyu Li
  • Patent number: 9283242
    Abstract: The present invention provides pharmaceutical compositions comprising a dihydro base described herein (e.g., compound DHdC). The dihydro base may show multiple tautomerism and may increase mutation of an RNA and/or DNA of a virus or cancer cell. The dihydro base may be used to reduce DNA methylation (e.g., in a cancer cell). The present invention also provides kits including the inventive pharmaceutical compositions and methods of treating a viral infection (e.g., influenza, HIV infection, or hepatitis C) or cancer using the pharmaceutical compositions or kits.
    Type: Grant
    Filed: January 22, 2014
    Date of Patent: March 15, 2016
    Assignee: Massachusetts Institute of Technology
    Inventors: John M. Essigmann, Deyu Li, Katherine J. Silvestre
  • Publication number: 20140206639
    Abstract: The present invention provides pharmaceutical compositions comprising a dihydro base described herein (e.g., compound DHdC). The dihydro base may show multiple tautomerism and may increase mutation of an RNA and/or DNA of a virus or cancer cell. The dihydro base may be used to reduce DNA methylation (e.g., in a cancer cell). The present invention also provides kits including the inventive pharmaceutical compositions and methods of treating a viral infection (e.g., influenza, HIV infection, or hepatitis C) or cancer using the pharmaceutical compositions or kits.
    Type: Application
    Filed: January 22, 2014
    Publication date: July 24, 2014
    Applicant: Massachusetts Institute of Technology
    Inventors: John M. Essigmann, Deyu Li, Katherine J. Silvestre
  • Patent number: 8093628
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Grant
    Filed: February 7, 2008
    Date of Patent: January 10, 2012
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Patent number: 8006442
    Abstract: The present invention relates to a noise attenuating window comprised of two panes of glass separated by a spacer tube. The spacer tube contains T-shaped acoustic resonator capable of targeting a single mode or multiple-mode to be attenuated.
    Type: Grant
    Filed: September 10, 2007
    Date of Patent: August 30, 2011
    Assignee: The Hong Kong Polytechnic University
    Inventors: Li Cheng, Deyu Li, Ganghua Yu
  • Publication number: 20110168968
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Application
    Filed: February 7, 2008
    Publication date: July 14, 2011
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20090008185
    Abstract: The present invention relates to a noise attenuating window comprised of two panes of glass separated by a spacer tube. The spacer tube contains T-shaped acoustic resonator capable of targeting a single mode or multiple-mode to be attenuated.
    Type: Application
    Filed: September 10, 2007
    Publication date: January 8, 2009
    Applicant: The Hong Kong Polytechnic University
    Inventors: Li Cheng, Deyu Li, Ganghua Yu
  • Patent number: 7355216
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Grant
    Filed: April 8, 2004
    Date of Patent: April 8, 2008
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Patent number: 7211143
    Abstract: Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar “epitaxial-casting” approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors.
    Type: Grant
    Filed: December 8, 2003
    Date of Patent: May 1, 2007
    Assignee: The Regents of the University of California
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yi-Ying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20040262636
    Abstract: Fluidic nanotube devices are described in which a hydrophilic, non-carbon nanotube, has its ends fluidly coupled to reservoirs. Source and drain contacts are connected to opposing ends of the nanotube, or within each reservoir near the opening of the nanotube. The passage of molecular species can be sensed by measuring current flow (source-drain, ionic, or combination). The tube interior can be functionalized by joining binding molecules so that different molecular species can be sensed by detecting current changes. The nanotube may be a semiconductor, wherein a tubular transistor is formed. A gate electrode can be attached between source and drain to control current flow and ionic flow. By way of example an electrophoretic array embodiment is described, integrating MEMs switches.
    Type: Application
    Filed: April 8, 2004
    Publication date: December 30, 2004
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yiying Wu, Deyu Li, Arun Majumdar
  • Publication number: 20040175844
    Abstract: Methods of fabricating uniform nanotubes are described in which nanotubes were synthesized as sheaths over nanowire templates, such as using a chemical vapor deposition process. For example, single-crystalline zinc oxide (ZnO) nanowires are utilized as templates over which gallium nitride (GaN) is epitaxially grown. The ZnO templates are then removed, such as by thermal reduction and evaporation. The completed single-crystalline GaN nanotubes preferably have inner diameters ranging from 30 nm to 200 nm, and wall thicknesses between 5 and 50 nm. Transmission electron microscopy studies show that the resultant nanotubes are single-crystalline with a wurtzite structure, and are oriented along the <001> direction. The present invention exemplifies single-crystalline nanotubes of materials with a non-layered crystal structure. Similar “epitaxial-casting” approaches could be used to produce arrays and single-crystalline nanotubes of other solid materials and semiconductors.
    Type: Application
    Filed: December 8, 2003
    Publication date: September 9, 2004
    Applicant: THE REGENTS OF THE UNIVERSITY OF CALIFORNIA
    Inventors: Peidong Yang, Rongrui He, Joshua Goldberger, Rong Fan, Yi-Ying Wu, Deyu Li, Arun Majumdar