Patents by Inventor Dhananjay Joshi
Dhananjay Joshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12241007Abstract: Articles including a substrate, a cover glass layer disposed over a top surface of the substrate, and an adhesive layer having a dynamic elastic modulus disposed between a bottom surface of the cover glass layer and the top surface of the substrate. The cover glass layer may have a thickness in the range of 1 micron to 200 microns. The dynamic elastic modulus of the adhesive layer may include a first elastic modulus in the range of 10 kPa to 1000 kPa measured at a stress frequency in the range of 0 Hertz to 5 Hertz and a temperature of 23 degrees C., and a second elastic modulus of 500 MPa or more measured at a stress frequency in the range of 10 Hertz to 1000 Hertz and a temperature of 23 degrees C. The adhesive layer may be optically transparent. The articles may be bendable electronic display devices or bendable electronic display device modules.Type: GrantFiled: August 12, 2020Date of Patent: March 4, 2025Assignee: CORNING INCORPORATEDInventors: Shinu Baby, Naigeng Chen, Edward John Fewkes, Dhananjay Joshi, Andrew Peter Kittleson, Yousef Kayed Qaroush, Ying Zhang
-
Publication number: 20250035140Abstract: Disclosed is a coupler for engaging C shaped stakes of a signpost. The coupler comprises an inner hollow rectangular shaft member and an outer hollow rectangular shaft member. Specifically, the outer hollow rectangular shaft member surrounds the inner hollow rectangular shaft member. The coupler further comprises a plurality of veins configured to run vertically on inner surface of the outer hollow rectangular shaft member and outer surface of the inner hollow rectangular shaft member and a support member configured within the gap of the inner hollow rectangular shaft member and the outer hollow rectangular shaft member at midportion to support C shaped stake thereon and to stop another C shaped member to move upward from lower side.Type: ApplicationFiled: January 26, 2024Publication date: January 30, 2025Applicant: Indian Metal SolutionsInventors: Dhananjay Joshi, Sachin Barve
-
Patent number: 12207405Abstract: A substrate including a via with a beveled overburden is disclosed. The substrate can include a substrate having a first surface, a second surface opposite the first surface, and a via passing from the first surface to the second surface. The via can be coated with a metallic layer that includes a first beveled overburden on the first surface, and the first beveled overburden can include a first outer edge that forms a first bevel angle greater than 95° with the first surface. The substrate can include a second beveled overburden that includes a second outer edge that forms a second bevel angle greater than 95° with the second surface. Methods of making the beveled overburdens are also disclosed.Type: GrantFiled: April 29, 2021Date of Patent: January 21, 2025Assignee: Corning IncorporatedInventors: Dhananjay Joshi, Chukwudi Azubuike Okoro, Scott Christopher Pollard
-
Publication number: 20240413070Abstract: A via includes a substrate and a porous electrically conductive material. The substrate includes a first surface and a second surface opposite to the first surface. The substrate includes a through-hole extending from the first surface to the second surface. The porous electrically conductive material extends through the through-hole. The porous electrically conductive material includes a first porosity in a central region of the through-hole and a second porosity less than the first porosity proximate the first surface and the second surface of the substrate.Type: ApplicationFiled: September 28, 2022Publication date: December 12, 2024Inventors: Sean Matthew Garner, Dhananjay Joshi, Chukwudi Azubuike Okoro
-
Patent number: 12071364Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2-0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.Type: GrantFiled: April 11, 2023Date of Patent: August 27, 2024Assignee: CORNING INCORPORATEDInventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, Jr., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
-
Publication number: 20230242438Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2-0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.Type: ApplicationFiled: April 11, 2023Publication date: August 3, 2023Inventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, JR., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
-
Publication number: 20230185603Abstract: Methods and apparatus relating to dynamic capability discovery and enforcement for accelerators and devices in multi-tenant systems are described. In an embodiment, a hardware accelerator device advertises one or more available operations and/or capabilities of the hardware accelerator device to one or more tenants. Logic circuitry controls access to the one or more available operations and/or capabilities of the one or more work queues on a per-tenant basis. Other embodiments are also disclosed and claimed.Type: ApplicationFiled: December 14, 2021Publication date: June 15, 2023Applicant: Intel CorporationInventors: Saurabh Gayen, Philip Lantz, Narayan Ranganathan, Dhananjay Joshi, Rajesh Sankaran, Utkarsh Kakaiya
-
Patent number: 11649187Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2?0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.Type: GrantFiled: April 22, 2021Date of Patent: May 16, 2023Assignee: CORNING INCORPORATEDInventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, Jr., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
-
Patent number: 11631828Abstract: A foldable electronic device module includes: a glass-containing cover element having a thickness from about (25) ?m to about (200) ?m, an elastic modulus from about (20) to (140) GPa, and first and second primary surfaces; a stack comprising: (a) an interlayer having an elastic modulus from about (0.01) to (10) GPa and a thickness from about 50 to (200) ?m, and (b) a flexible substrate having a thickness from about (100) to (200) ?m; and a first adhesive joining the stack to the cover element, and comprising an elastic modulus from about (0.001) to (10) GPa and a thickness from about (5) to (25) ?m. Further, the module comprises an impact resistance characterized by tensile stresses of less than about (4100) MPa and less than about (8300) MPa at the first and second primary surfaces of the cover element, respectively, upon an impact in a Pen Drop Test.Type: GrantFiled: October 9, 2018Date of Patent: April 18, 2023Assignee: Corning IncorporatedInventors: Shinu Baby, Dhananjay Joshi, Yousef Kayed Qaroush, Bin Zhang
-
Publication number: 20230040226Abstract: Apparatus and method for managing pipeline depth of a data processing device. For example, one embodiment of an apparatus comprises: an interface to receive a plurality of work requests from a plurality of clients; and a plurality of engines to perform the plurality of work requests; wherein the work requests are to be dispatched to the plurality of engines from a plurality of work queues, the work queues to store a work descriptor per work request, each work descriptor to include information needed to perform a corresponding work request, wherein the plurality of work queues include a first work queue to store work descriptors associated with first latency characteristics and a second work queue to store work descriptors associated with second latency characteristics; engine configuration circuitry to configure a first engine to have a first pipeline depth based on the first latency characteristics and to configure a second engine to have a second pipeline depth based on the second latency characteristics.Type: ApplicationFiled: December 22, 2021Publication date: February 9, 2023Inventors: Saurabh GAYEN, Dhananjay JOSHI, Philip LANTZ, Rajesh SANKARAN, Narayan RANGANATHAN
-
METHOD AND APPARATUS FOR HIGH-PERFORMANCE PAGE-FAULT HANDLING FOR MULTI-TENANT SCALABLE ACCELERATORS
Publication number: 20230042934Abstract: Apparatus and method for high-performance page fault handling. For example, one embodiment of an apparatus comprises: one or more accelerator engines to process work descriptors submitted by clients to a plurality of work queues; fault processing hardware logic associated with the one or more accelerator engines, the fault processing hardware logic to implement a specified page fault handling mode for each work queue of the plurality of work queues, the page fault handling modes including a first page fault handling mode and a second page fault handling mode.Type: ApplicationFiled: December 22, 2021Publication date: February 9, 2023Inventors: Utkarsh Y. KAKAIYA, Philip LANTZ, Sanjay KUMAR, Rajesh SANKARAN, Narayan RANGANATHAN, Saurabh GAYEN, Dhananjay JOSHI, Nikhil P. RAO -
Publication number: 20220288893Abstract: A method for forming a vehicle interior system. In the method, a first glass layer is provided in which the first glass layer has a first major surface and a second major surface. The second major surface is opposite to the first major surface. A second glass layer is provided in which the second glass layer has a third major surface and a fourth major surface. The fourth major surface is opposite to the third major surface. The second major surface is bonded to the third major surface with an adhesive layer to form a glass laminate. The glass laminate is placed on a mold, and the glass laminate is formed at a temperature below a glass transition temperature of each glass layer to form a first curvature.Type: ApplicationFiled: August 3, 2020Publication date: September 15, 2022Inventors: Dhananjay Joshi, Khaled Layouni, Jinfa Mou, Jong Se Park
-
Publication number: 20220282130Abstract: Articles including a substrate, a cover glass layer disposed over a top surface of the substrate, and an adhesive layer having a dynamic elastic modulus disposed between a bottom surface of the cover glass layer and the top surface of the substrate. The cover glass layer may have a thickness in the range of 1 micron to 200 microns. The dynamic elastic modulus of the adhesive layer may include a first elastic modulus in the range of 10 kPa to 1000 kPa measured at a stress frequency in the range of 0 Hertz to 5 Hertz and a temperature of 23 degrees C., and a second elastic modulus of 500 MPa or more measured at a stress frequency in the range of 10 Hertz to 1000 Hertz and a temperature of 23 degrees C. The adhesive layer may be optically transparent. The articles may be bendable electronic display devices or bendable electronic display device modules.Type: ApplicationFiled: August 12, 2020Publication date: September 8, 2022Inventors: Shinu Baby, Naigeng Chen, Edward John Fewkes, Dhananjay Joshi, Andrew Peter Kittleson, Yousef Kayed Qaroush, Ying Zhang
-
Patent number: 11104601Abstract: A foldable electronic device module that includes a glass cover element having a thickness from about 25 ?m to about 200 ?m, an elastic modulus from about 20 GPa to about 140 GPa. The module further includes: a stack having a thickness from about 50 ?m to about 600 ?m; and a first adhesive joining the stack to a second primary surface of the cover element, the adhesive having a shear modulus from about 0.01 MPa to about 1 GPa and a glass transition temperature of at least 80 C. Further, the device module includes a flex-bond residual stress region through the thickness, and within a central region, of the cover element that ranges from a maximum compressive residual stress at the second primary surface to a maximum tensile residual stress at a first primary surface of the element along a central bend axis of the cover element.Type: GrantFiled: March 13, 2017Date of Patent: August 31, 2021Assignee: Corning IncorporatedInventors: Guangli Hu, Dhananjay Joshi, Eunyoung Park, Yousef Kayed Qaroush
-
Publication number: 20210238083Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t+0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2?0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.Type: ApplicationFiled: April 22, 2021Publication date: August 5, 2021Applicant: CORNING INCORPORATEDInventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, JR., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
-
Publication number: 20210221100Abstract: A laminated glass structure is provided that includes: a substrate, a flexible glass sheet, a buffer layer, a first adhesive and a second adhesive. The substrate has a thickness from about 2.5 mm to about 50 mm and primary surfaces. The buffer layer has a thickness from about 0.1 mm to about 2.5 mm and is laminated to the substrate with the first adhesive. The flexible glass sheet has a thickness of no greater than 0.3 mm and is laminated to the buffer layer with the second adhesive. Further, the buffer layer is characterized by an elastic modulus of at least 70 GPa and a coefficient of thermal expansion between about 4 and 25 ppm*° C.?1.Type: ApplicationFiled: June 1, 2017Publication date: July 22, 2021Inventors: Dhananjay Joshi, Micheal William Price, James Ernest Webb, Chunhe Zhang
-
Patent number: 11031574Abstract: A foldable electronic device module includes a glass cover element having a thickness from about 25 ?m to about 200 ?m, an elastic modulus from about 20 GPa to about 140 GPa and a puncture resistance of at least 1.5 kgf. The module further includes a stack with a thickness between about 100 ?m and about 600 ?m; and a first adhesive joining the stack to the cover element with a shear modulus between about 1 MPa and about 1 GPa. The stack further includes a panel, an electronic device, and a stack element affixed to the panel with a stack adhesive. Further, the device module is characterized by a tangential stress at a primary surface of the cover element of no greater than about 1000 MPa in tension upon bending the module to a radius from about 20 mm to about 2 mm.Type: GrantFiled: September 5, 2018Date of Patent: June 8, 2021Assignee: Corning IncorporatedInventors: Guangli Hu, Dhananjay Joshi, Eunyoung Park, Yousef Kayed Qaroush
-
Patent number: 11014848Abstract: A glass ceramic article including a lithium disilicate crystalline phase, a petalite crystalline phased, and a residual glass phase. The glass ceramic article has a warp (?m)<(3.65×10?9/?m×diagonal2) where diagonal is a diagonal measurement of the glass ceramic article in ?m, a stress of less than 30 nm of retardation per mm of glass ceramic article thickness, a haze (%)<0.0994t +0.12 where t is the thickness of the glass ceramic article in mm, and an optical transmission (%)>0.91×10(2-0.03t) of electromagnetic radiation wavelengths from 450 nm to 800 nm, where t is the thickness of the glass ceramic article in mm.Type: GrantFiled: July 12, 2019Date of Patent: May 25, 2021Assignee: CORNING INCORPORATEDInventors: Carol Ann Click, James Howard Edmonston, Qiang Fu, Jill Marie Hall, Mathieu Gerard Jacques Hubert, Dhananjay Joshi, Andrew Peter Kittleson, Katherine Weber Kroemer, Galan Gregory Moore, Rohit Rai, John Richard Ridge, John Robert Saltzer, Jr., Charlene Marie Smith, Erika Lynn Stapleton, Matthew Daniel Trosa, Ljerka Ukrainczyk, Shelby Kerin Wilson, Bin Yang, Zheming Zheng
-
Publication number: 20200147932Abstract: A laminated glass article including a base layer, an anisotropic layer disposed over a top surface of the base layer, and a glass layer disposed over the anisotropic layer. The anisotropic layer may include homogeneous mechanical anisotropic properties measured at intervals of 250 microns. In some embodiments, the anisotropic layer may be an orthotropic layer including homogeneous mechanical orthotropic properties measured at intervals of 250 microns. The homogenous mechanical anisotropic or orthotropic properties of the anisotropic layer may provide a flexible laminated glass article with a high resistance to impact and puncture forces. In some embodiments, the laminated glass article may define all or a portion of a cover substrate for a consumer product.Type: ApplicationFiled: June 1, 2018Publication date: May 14, 2020Inventors: Shinu Baby, Dhananjay Joshi, Inna Igorevna Kouzmina, Yousef Kayed Qaroush, Arlin Lee Weikel
-
Patent number: 10622581Abstract: A foldable electronic device module includes a glass cover element having a thickness from about 25 ?m to about 200 ?m, an elastic modulus from about 20 GPa to about 140 GPa and a puncture resistance of at least 1.5 kgf. The module further includes a stack with a thickness between about 100 ?m and about 600 ?m; and a first adhesive joining the stack to the cover element with a shear modulus between about 1 MPa and about 1 GPa. The stack further includes a panel, an electronic device, and a stack element affixed to the panel with a stack adhesive. Further, the device module is characterized by a tangential stress at a primary surface of the cover element of no greater than about 1000 MPa in tension upon bending the module to a radius from about 20 mm to about 2 mm.Type: GrantFiled: October 13, 2016Date of Patent: April 14, 2020Assignee: Corning IncorporatedInventors: Guangli Hu, Dhananjay Joshi, Eunyoung Park, Yousef Kayed Qaroush