Patents by Inventor Dhaval A. Doshi
Dhaval A. Doshi has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 12344728Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: GrantFiled: December 16, 2024Date of Patent: July 1, 2025Assignee: Beyond Lotus LLCInventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Patent number: 12275834Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: GrantFiled: November 25, 2024Date of Patent: April 15, 2025Assignee: Beyond Lotus LLCInventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A. Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Publication number: 20250115735Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: ApplicationFiled: December 16, 2024Publication date: April 10, 2025Inventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A. Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Publication number: 20250084234Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: ApplicationFiled: November 25, 2024Publication date: March 13, 2025Inventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A. Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Publication number: 20250084233Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: ApplicationFiled: November 22, 2024Publication date: March 13, 2025Inventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A. Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Patent number: 12247114Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: GrantFiled: November 22, 2024Date of Patent: March 11, 2025Assignee: Beyond Lotus LLCInventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Publication number: 20250043086Abstract: Disclosed herein are methods of preparing a composite, comprising mixing a solid elastomer, a wet filler, and a resin. Single-stage or multi-stage mixing methods can be used. Also disclosed are composite comprising the filler dispersed in the elastomer at a loading of at least 20 phr, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: ApplicationFiled: December 7, 2022Publication date: February 6, 2025Inventors: Ping Zhang, Michael Beaulieu, Brian N. Hult, Dhaval A. Doshi
-
Patent number: 12209170Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: GrantFiled: June 4, 2020Date of Patent: January 28, 2025Assignee: Beyond Lotus LLCInventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A. Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Publication number: 20240352225Abstract: Disclosed herein are elastomer composites stored in a container or package. The composite is uncured and comprises at least one elastomer and at least one filler. The package or container comprises at least one wall surrounding the composite wherein the at least one wall comprises at least one oxygen barrier layer. Containers or packages having this oxygen barrier wall have an oxygen transmission rate of no more than 100 cm3/(m2·day·atm) at 23° C. and 0% relative humidity. Also disclosed are methods for storing elastomer composites with the packages or containers disclosed herein.Type: ApplicationFiled: July 19, 2022Publication date: October 24, 2024Inventors: Prachi A. Dhavale, Dhaval A. Doshi
-
Patent number: 11692081Abstract: Core particles produced in situ or introduced as preformed core particles are coated with a layer of carbon. Non-carbon as well as some carbon-based core materials can be utilized. The resulting carbon coated particles can find applications in rubber products, for instance as reinforcement for tire components.Type: GrantFiled: November 5, 2021Date of Patent: July 4, 2023Assignee: Cabot CorporationInventors: David M. Matheu, Theis F. Clarke, David S. Crocker, Frederick H. Rumpf, David C. Reynolds, Dhaval A. Doshi, Martin C. Green
-
Publication number: 20230159724Abstract: Elastomeric compositions are described that include at least one filler that are carbon nanostructures or fragments thereof. Methods to prepare elastomeric compositions are further described. Loadings of the carbon nanostructures can be from about 0.1 phr to about 50 phr or a volume fraction of from about 0.1 vol % to about 20 vol %.Type: ApplicationFiled: April 16, 2021Publication date: May 25, 2023Inventors: Limeng Chen, Jiaxi Li, Agathagelos Kyrlidis, Dhaval A. Doshi, Ping Zhang
-
Publication number: 20220332016Abstract: Disclosed herein are methods of preparing composites from solid elastomer(s) and wet filler(s), as well as products, including composites, vulcanizates, and articles therefrom. The wet filler can have a liquid content of at least 15%. A resulting composite comprises the filler dispersed in the elastomer at a loading of at least 20 phr with a filler yield loss of no more than 10%, wherein the composite has a liquid content of no more than 10% by weight based on total weight of said composite.Type: ApplicationFiled: June 4, 2020Publication date: October 20, 2022Inventors: Yakov E. Kutsovsky, Martin C. Green, Ping Zhang, Dhaval A. Doshi, Jiaxi Li, Michael D. Morris, Brian N. Hult, Ralph E. Dickinson, Irina S. Yurovskaya, Frederick H. Rumpf, Satyan Choudhary, Hassan M. Ali, Ani T. Nikova, Jincheng Xiong, Michael Beaulieu
-
Publication number: 20220056241Abstract: Core particles produced in situ or introduced as preformed core particles are coated with a layer of carbon. Non-carbon as well as some carbon-based core materials can be utilized. The resulting carbon coated particles can find applications in rubber products, for instance as reinforcement for tire components.Type: ApplicationFiled: November 5, 2021Publication date: February 24, 2022Inventors: David M. Matheu, Theis F. Clarke, David S. Crocker, Frederick H. Rumpf, David C. Reynolds, Dhaval A. Doshi, Martin C. Green
-
Patent number: 11198774Abstract: Core particles produced in situ or introduced as preformed core particles are coated with a layer of carbon. Non-carbon as well as some carbon-based core materials can be utilized. The resulting carbon coated particles can find applications in rubber products, for instance as reinforcement for tire components.Type: GrantFiled: November 23, 2019Date of Patent: December 14, 2021Assignee: Cabot CorporationInventors: David M. Matheu, Theis F. Clarke, David S. Crocker, Frederick H. Rumpf, David C. Reynolds, Dhaval A. Doshi, Martin C. Green
-
Patent number: 10927261Abstract: Carbon blacks such as reinforcing-grade carbon blacks with high structure are described. The carbon black can have the following properties: a statistical thickness surface area (STSA) ranging from 80 m2/g to 150 m2/g, an oil absorption number (OAN) of at least 180 mL/100 g, and a crushed oil absorption number (COAN) of at least 110 mL/100 g. Rubber compounds which incorporate the carbon black also are described.Type: GrantFiled: April 27, 2018Date of Patent: February 23, 2021Assignee: Cabot CorporationInventors: Jaesun Choi, Theis F. Clarke, Dhaval A. Doshi
-
Publication number: 20200190288Abstract: Core particles produced in situ or introduced as preformed core particles are coated with a layer of carbon. Non-carbon as well as some carbon-based core materials can be utilized. The resulting carbon coated particles can find applications in rubber products, for instance as reinforcement for tire components.Type: ApplicationFiled: November 23, 2019Publication date: June 18, 2020Inventors: David M. Matheu, Theis F. Clarke, David S. Crocker, Frederick H. Rumpf, David C. Reynolds, Dhaval A. Doshi, Martin C. Green
-
Publication number: 20180319992Abstract: Carbon blacks such as reinforcing-grade carbon blacks with high structure are described. The carbon black can have the following properties: a statistical thickness surface area (STSA) ranging from 80 m2/g to 150 m2/g, an oil absorption number (OAN) of at least 180 mL/100 g, and a crushed oil absorption number (COAN) of at least 110 mL/100 g. Rubber compounds which incorporate the carbon black also are described.Type: ApplicationFiled: April 27, 2018Publication date: November 8, 2018Inventors: Jaesun Choi, Theis F. Clarke, Dhaval A. Doshi
-
Patent number: 9969856Abstract: Composites, such as syntactic foams, are described. The composite contains at least one polymer and at least one aerogel. The aerogel is coated with a coating substance to at least substantially prevent the intrusion of the polymer into the pores of the aerogel. Methods of making the composite are also described, as well as uses of the composite.Type: GrantFiled: April 18, 2008Date of Patent: May 15, 2018Assignee: Cabot CorporationInventors: Jameel Menashi, Ulrich Bauer, Elmar Pothmann, Andrew A. Peterson, Anna K. Wilkins, Mihai Anton, Dhaval A. Doshi, William H. Dalzell
-
Publication number: 20170101773Abstract: A flexible insulating structure includes a batting and a mixture of aerogel-containing particles and a binder, the aerogel-containing particles impregnating at least one layer of the batting. A method for preparing a flexible insulating structure comprises applying a mixture including aerogel-containing particles and a binder to a batting having one or more batting layers; and drying or allowing the binder to dry, thereby forming the flexible insulating structure.Type: ApplicationFiled: December 21, 2016Publication date: April 13, 2017Inventors: Dhaval A. Doshi, Catherine M. Norwood
-
Patent number: 9284419Abstract: The present invention relates to a method of preparing polymer compositions comprising modified metal oxides in a polymer wherein a nanoparticle dispersion of a metal oxide in a non-aqueous solvent is combined with at least one coupling agent to form a nanoparticle dispersion of a modified metal oxide in the non-aqueous solvent. The nanoparticle dispersion is then combined with a polymer followed by the removal of the non-aqueous solvent or, alternatively, combined with a monomer, which is polymerized to form the polymer and removal of the solvent, in any order. Also disclosed are polymer compositions prepared by this method.Type: GrantFiled: February 25, 2010Date of Patent: March 15, 2016Assignee: Cabot CorporationInventors: Dhaval A. Doshi, Zhifeng Li