Patents by Inventor Dhruv Sareen

Dhruv Sareen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20200224159
    Abstract: A unified cell differentiation protocol for obtaining photoreceptor cells, retinal pigment epithelium, and 3D retinal organoid from pluripotent stem cells is described. Also described are photoreceptor cells, retinal pigmented epithelium, and 3D retinal organoid obtained from pluripotent stem cells. Also described are a pharmaceutical composition and a medicament containing the photoreceptor cells, retinal pigment epithelium, and 3D retinal organoid as described.
    Type: Application
    Filed: October 5, 2018
    Publication date: July 16, 2020
    Inventors: Rajarshi PAL, Rajani BATTU, Reena RATHOD, Harshini SURENDRAN, Kapil BHARTI, Deepak LAMBA, Dhruv SAREEN, Mahendra RAO, Sushma NANJUNDA SWAMY, Vijay Bhaskar KONALA REDDY, Mohanapriya RAJAMOORTHY
  • Publication number: 20200157508
    Abstract: Induced pluripotent stem cell (iPSC)-based organoid technology has tremendous potential to elucidate the intestinal and colonic epithelium's role in health and disease. Described herein are methods and compositions for generation of intestinal and colonic cells from iPSCs. Derivation of iPSCs from subjected afflicted with early onset and very early onset Inflammatory Bowel Disease (IBD), serves as an excellent model for understanding disease pathogenesis.
    Type: Application
    Filed: May 18, 2018
    Publication date: May 21, 2020
    Applicant: Cedares-Sinai Medical Center
    Inventors: Robert Barrett, Clive Svendsen, Stephan R. Targan, Michael Workman, Dhruv Sareen
  • Publication number: 20200071673
    Abstract: The invention relates to culturing motor neuron cells together with skeletal muscle cells in a fluidic device under conditions whereby the interaction of these cells mimic the structure and function of the neuromuscular junction (NMJ) providing a NMJ-on-chip. Good viability, formation of myo-fibers and function of skeletal muscle cells on fluidic chips allow for measurements of muscle cell contractions. Embodiments of motor neurons co-cultures with contractile myo-fibers are contemplated for use with modeling diseases affecting NMJ's, e.g. Amyotrophic lateral sclerosis (ALS).
    Type: Application
    Filed: March 14, 2018
    Publication date: March 5, 2020
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Dhruv SAREEN, Berhan MANDEFRO, Anjoscha KAUS
  • Publication number: 20200002671
    Abstract: Human induced pluripotent stem cells (iPSCs) can give rise to multiple cell types and hold great promise in regenerative medicine and disease modeling applications. The Inventors herein developed a reliable two-step protocol to generate human mammary-like organoids from iPSCs. Non-neural ectoderm cell-containing spheres, referred to as mEBs, were first differentiated and enriched from iPSCs using MammoCult medium. Gene expression profile analysis suggested that mammary gland function-associated signaling pathways were hallmarks of 10-d differentiated mEBs. The Inventors generated mammary-like organoids from 10-d mEBs using 3D floating mixed gel culture and a three-stage differentiation procedure. These organoids expressed common breast tissue, luminal, and basal markers, including estrogen receptor, and could be induced to produce milk protein. These results demonstrate that human iPSCs can be directed in vitro toward mammary lineage differentiation.
    Type: Application
    Filed: January 25, 2018
    Publication date: January 2, 2020
    Applicant: Cedars-Sinai Medical Center
    Inventors: Ying QU, Xiaojiang CUI, Dhruv SAREEN, Armando E. GIULIANO
  • Publication number: 20190359924
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: February 26, 2019
    Publication date: November 28, 2019
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20190194606
    Abstract: Described here are systems and methods for deriving both spinal motor neurons and brain microvascular endothelial cells from induced pluripotent stem cells using distinct methods and combining them in a chip format. Neurons cultured alone in chip microvolume displayed increased calcium transient function and chip-specific gene expression. When seeded with endothelial cells, interaction further enhanced neural function, elicited vascular-neural interaction, niche gene expression with enhanced in vivo-like signatures arising from the chip co-cultures. Development of novel media formulations further allow for improved readout of differentiation process, by eliminating additives that otherwise confound differentiation processes and resulting phenotypes.
    Type: Application
    Filed: August 29, 2017
    Publication date: June 27, 2019
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Gad VATINE, Sam SANCES, Clive SVENDSEN, Dhruv SAREEN, Alexis J. KERL
  • Publication number: 20190194624
    Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors. Using the described reprogramming protocol, one is able to consistently reprogram non-T cells with close to 100% success from non-T cell or non-B cell sources. Further advantages include use of a defined reprogramming media E7 and using defined clinically compatible substrate recombinant human L-521. Generation of iPSCs from these blood cell sources allows for recapitulation of the entire genomic repertoire, preservation of genomic fidelity and enhanced genomic stability.
    Type: Application
    Filed: June 16, 2017
    Publication date: June 27, 2019
    Applicant: Cedars-Sinai Medical Center
    Inventors: Dhruv SAREEN, Loren A. ORNELAS, Clive SVENDSEN
  • Publication number: 20190153395
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Application
    Filed: February 1, 2017
    Publication date: May 23, 2019
    Applicant: Cedars-Sinai Medical Center
    Inventors: Robert Barrett, Clive Svendsen, Stephan R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani
  • Publication number: 20190136203
    Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors. Using the described reprogramming protocol, one is able to consistently reprogram non-T cells with close to 100% success from non-T cell or non-B cell sources. Further advantages include use of a defined reprogramming media E7 and using defined clinically compatible substrate recombinant human L-521. Generation of iPSCs from these blood cell sources allows for recapitulation of the entire genomic repertoire, preservation of genomic fidelity and enhanced genomic stability.
    Type: Application
    Filed: January 14, 2019
    Publication date: May 9, 2019
    Applicant: CEDARS-SINAI MEDICAL CENTER
    Inventors: Dhruv Sareen, Loren A. Ornelas, Clive Svendsen
  • Patent number: 10221395
    Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors. Using the described reprogramming protocol, one is able to consistently reprogram non-T cells with close to 100% success from non-T cell or non-B cell sources. Further advantages include use of a defined reprogramming media E7 and using defined clinically compatible substrate recombinant human L-521. Generation of iPSCs from these blood cell sources allows for recapitulation of the entire genomic repertoire, preservation of genomic fidelity and enhanced genomic stability.
    Type: Grant
    Filed: June 16, 2016
    Date of Patent: March 5, 2019
    Assignee: Cedars-Sinai Medical Center
    Inventors: Dhruv Sareen, Loren A. Ornelas, Clive Svendsen
  • Publication number: 20190031992
    Abstract: Organs-on-chips are microfluidic devices for culturing living cells in micrometer sized chambers in order to model physiological functions of tissues and organs. Engineered patterning and continuous fluid flow in these devices has allowed culturing of intestinal cells bearing physiologically relevant features and sustained exposure to bacteria while maintaining cellular viability, thereby allowing study of inflammatory bowl diseases. However, existing intestinal cells do not possess all physiologically relevant subtypes, do not possess the repertoire of genetic variations, or allow for study of other important cellular actors such as immune cells. Use of iPSC-derived epithelium, including IBD patient-specific cells, allows for superior disease modeling by capturing the multi-faceted nature of the disease.
    Type: Application
    Filed: July 31, 2018
    Publication date: January 31, 2019
    Inventors: S. Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher David Hinojosa, Jacob Fraser, Jefferson Puerta, Geraldine Hamilton, Robert Barrett, Clive Svendsen, Daniel Levner, Stephen R. Targan, Michael Workman, Dhruv Sareen, Uthra Rajamani, Magdalena Kasendra
  • Publication number: 20180305651
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: October 19, 2016
    Publication date: October 25, 2018
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20180298332
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 18, 2018
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20180298331
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: April 17, 2018
    Publication date: October 18, 2018
    Inventors: S. Jordan Kerns, Norman Wen, Carolina Lucchesi, Christopher David Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Samuel Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20180057788
    Abstract: The invention relates to culturing brain endothelial cells, and optionally astrocytes and neurons in a fluidic device under conditions whereby the cells mimic the structure and function of the blood brain barrier. Culture of such cells in a microfluidic device, whether alone or in combination with other cells, drives maturation and/or differentiation further than existing systems.
    Type: Application
    Filed: November 15, 2016
    Publication date: March 1, 2018
    Inventors: Jordan Kerns, Norman Wen, Carol Lucchesi, Christopher Hinojosa, Jacob Fraser, Geraldine Hamilton, Gad Vatine, Sam Sances, Clive Svendsen, Daniel Levner, Dhruv Sareen
  • Publication number: 20170362574
    Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors. Using the described reprogramming protocol, one is able to consistently reprogram non-T cells with close to 100% success from non-T cell or non-B cell sources. Further advantages include use of a defined reprogramming media E7 and using defined clinically compatible substrate recombinant human L-521. Generation of iPSCs from these blood cell sources allows for recapitulation of the entire genomic repertoire, preservation of genomic fidelity and enhanced genomic stability.
    Type: Application
    Filed: June 16, 2016
    Publication date: December 21, 2017
    Applicant: Cedars-Sinai Medical Center
    Inventors: Dhruv Sareen, Loren A. Ornelas, Clive Svendsen
  • Publication number: 20170226478
    Abstract: The invention relates to culturing motor neuron cells together with skeletal muscle cells in a fluidic device under conditions whereby the interaction of these cells mimic the structure and function of the neuromuscular junction (NMJ) providing a NMJ-on-chip. Good viability, formation of myo-fibers and function of skeletal muscle cells on fluidic chips allow for measurements of muscle cell contractions. Embodiments of motor neurons co-cultures with contractile myo-fibers are contemplated for use with modeling diseases affecting NMJ's, e.g. Amyotrophic lateral sclerosis (ALS).
    Type: Application
    Filed: March 14, 2017
    Publication date: August 10, 2017
    Inventors: Jordan Kerns, Norman Wen, Geraldine Hamilton, Christopher Hinojosa, Jacob Fraser, Catherine Karalis, Janna Nawroth, Dhruv Sareen, Anjoscha Kaus, Berhan Mandefro, Hyoung Shin Park, Ville Kujala
  • Publication number: 20170107498
    Abstract: Described herein are methods and compositions related to generation of induced pluripotent stem cells (iPSCs). Improved techniques for establishing highly efficient, reproducible reprogramming using non-integrating episomal plasmid vectors, including generation of iPSCs from lymphoblastoid B-cells and lymphoblastoid B-cell lines. Such methods and compositions find use in regenerative medicine applications.
    Type: Application
    Filed: June 5, 2015
    Publication date: April 20, 2017
    Applicant: Cedars-Sinai Medical Center
    Inventors: Dhruv Sareen, Loren Ornelas, Robert Barrett