Patents by Inventor Di-Jia Liu

Di-Jia Liu has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 7758921
    Abstract: A method of making a membrane electrode assembly (MEA) having an anode and a cathode and a proton conductive membrane there between. A bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated in the nanotubes forms at least one portion of the MEA and is in contact with the membrane. A combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into a first reaction zone maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is transmitted to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes.
    Type: Grant
    Filed: March 3, 2006
    Date of Patent: July 20, 2010
    Assignee: UChicago Argonne, LLC
    Inventors: Di-Jia Liu, Junbing Yang
  • Publication number: 20100167918
    Abstract: A catalyst for an electro-chemical oxygen reduction reaction (ORR) of a bundle of longitudinally aligned carbon nanotubes having a catalytically active transition metal incorporated longitudinally in said nanotubes. A method of making an electro-chemical catalyst for an oxygen reduction reaction (ORR) having a bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes, where a substrate is in a first reaction zone, and a combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into the first reaction zone which is maintained at a first reaction temperature for a time sufficient to vaporize material therein.
    Type: Application
    Filed: March 3, 2006
    Publication date: July 1, 2010
    Applicant: The University of Chicago
    Inventors: Di-Jia Liu, Junbing Yang, Xiaoping Wang
  • Patent number: 7732084
    Abstract: A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.
    Type: Grant
    Filed: February 4, 2004
    Date of Patent: June 8, 2010
    Assignee: General Electric Company
    Inventors: Di-Jia Liu, Jie Guan, Nguyen Minh
  • Patent number: 7666534
    Abstract: An electro-catalytic oxidation device (ECOD) for the removal of contaminates, preferably carbonaceous materials, from an influent comprising an ECOD anode, an ECOD cathode, and an ECOD electrolyte. The ECOD anode is at a temperature whereby the contaminate collects on the surface of the ECOD anode as a buildup. The ECOD anode is electrically connected to the ECOD cathode, which consumes the buildup producing electricity and carbon dioxide. The ECOD anode is porous and chemically active to the electro-catalytic oxidation of the contaminate. The ECOD cathode is exposed to oxygen, and made of a material which promotes the electro-chemical reduction of oxygen to oxidized ions. The ECOD electrolyte is non-permeable to gas, electrically insulating and a conductor to oxidized. The ECOD anode is connected to the fuel reformer and the fuel cell. The ECOD electrolyte is between and in ionic contact with the ECOD anode and the ECOD cathode.
    Type: Grant
    Filed: September 19, 2006
    Date of Patent: February 23, 2010
    Assignee: The United States of America as Represented by the Untied States Department of Energy
    Inventor: Di-Jia Liu
  • Patent number: 7604779
    Abstract: An aircraft environmental control system includes a catalytic converter having ozone-destroying capability. A surface of the catalytic converter is anodized to form an anodized layer, and the metal oxide layer is washcoated to form a washcoat layer. An ozone destroying catalyst is impregnated in the anodized and washcoat layers. The catalyst may include one or more metals. For example, a bimetallic catalyst may include a precious metal and a transition metal.
    Type: Grant
    Filed: September 16, 2005
    Date of Patent: October 20, 2009
    Assignee: Honeywell International Inc.
    Inventors: Di-Jia Liu, Daniel R. Winstead, Peter M. Michalakos
  • Patent number: 7507690
    Abstract: The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active firs row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.
    Type: Grant
    Filed: April 27, 2004
    Date of Patent: March 24, 2009
    Assignee: UChicago Argonne, LLC.
    Inventors: Michael Krumpelt, Di-Jia Liu
  • Publication number: 20090023828
    Abstract: Porous polymers, tribenzohexazatriphenylene, poly-9,9?-spirobifluorene, poly-tetraphenyl methane and their derivatives for storage of H2 prepared through a chemical synthesis method. The porous polymers have high specific surface area and narrow pore size distribution. Hydrogen uptake measurements conducted for these polymers determined a higher hydrogen storage capacity at the ambient temperature over that of the benchmark materials. The method of preparing such polymers, includes oxidatively activating solids by CO2/steam oxidation and supercritical water treatment.
    Type: Application
    Filed: June 27, 2008
    Publication date: January 22, 2009
    Inventors: Luping Yu, Di-Jia Liu, Shengwen Yuan, Junbing Yang
  • Publication number: 20060269827
    Abstract: A method of making a membrane electrode assembly (MEA) having an anode and a cathode and a proton conductive membrane there between. A bundle of longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated in the nanotubes forms at least one portion of the MEA and is in contact with the membrane. A combination selected from one or more of a hydrocarbon and an organometallic compound containing an catalytically active transition metal and a nitrogen containing compound and an inert gas and a reducing gas is introduced into a first reaction zone maintained at a first reaction temperature for a time sufficient to vaporize material therein. The vaporized material is transmitted to a second reaction zone maintained at a second reaction temperature for a time sufficient to grow longitudinally aligned carbon nanotubes with a catalytically active transition metal incorporated throughout the nanotubes.
    Type: Application
    Filed: March 3, 2006
    Publication date: November 30, 2006
    Applicant: The University of Chicago
    Inventors: Di-Jia Liu, Junbing Yang
  • Patent number: 7037878
    Abstract: An aircraft environmental control system includes a catalytic converter having ozone-destroying capability. A surface of the catalytic converter is anodized to form an anodized layer, and the metal oxide layer is washcoated to form a washcoat layer. An ozone destroying catalyst is impregnated in the anodized and washcoat layers. The catalyst may include one or more metals. For example, a bimetallic catalyst may include a precious metal and a transition metal.
    Type: Grant
    Filed: May 7, 2003
    Date of Patent: May 2, 2006
    Assignee: Honeywell International Inc.
    Inventors: Di-Jia Liu, Daniel R. Winstead, Peter M. Michalakos
  • Publication number: 20060062704
    Abstract: An aircraft environmental control system includes a catalytic converter having ozone-destroying capability. A surface of the catalytic converter is anodized to form an anodized layer, and the metal oxide layer is washcoated to form a washcoat layer. An ozone destroying catalyst is impregnated in the anodized and washcoat layers. The catalyst may include one or more metals. For example, a bimetallic catalyst may include a precious metal and a transition metal.
    Type: Application
    Filed: September 16, 2005
    Publication date: March 23, 2006
    Inventors: Di-Jia Liu, Daniel Winstead, Peter Michalakos
  • Patent number: 6962193
    Abstract: A tube assembly for cooling an incoming fluid stream and destroying pollutants contained therein comprises a tube with a catalytic coating on its inner wall and an arrangement for disrupting laminar flow of the fluid stream as it transits the tube, thereby causing turbulence which increases mass transfer between the gas phase and the catalyst-coated inner surfaces. One embodiment comprises an axially inserted turbulator that is segmented by one or more axially directed cuts, each segment rotated by an offset angle with respect to an adjacent segment, and optionally coated with the catalytic coating. Another embodiment comprises sets of opposed dimples, each set separated from its adjacent set by a linear distance and an axial angle. Such tube assemblies may be advantageously employed in aircraft environmental control systems for conditioning cabin air.
    Type: Grant
    Filed: April 9, 2002
    Date of Patent: November 8, 2005
    Assignee: Honeywell Interntaional Inc.
    Inventors: Di-Jia Liu, Belinda S. Foor, Daniel R. Winstead
  • Publication number: 20050170234
    Abstract: A catalyzed interconnect for an SOFC electrically connects an anode and an anodic current collector and comprises a metallic substrate, which provides space between the anode and anodic current collector for fuel gas flow over at least a portion of the anode, and a catalytic coating on the metallic substrate comprising a catalyst for catalyzing hydrocarbon fuel in the fuel gas to hydrogen rich reformate. An SOFC including the catalyzed anodic inter-connect, a method for operating an SOFC, and a method for making a catalyzed anodic interconnect are also disclosed.
    Type: Application
    Filed: February 4, 2004
    Publication date: August 4, 2005
    Applicant: General Electric Company
    Inventors: Di-Jia Liu, Jie Guan, Nguyen Minh
  • Publication number: 20040204315
    Abstract: The invention addressed two critical issues in fuel processing for fuel cell application, i.e. catalyst cost and operating stability. The existing state-of-the-art fuel reforming catalyst uses Rh and platinum supported over refractory oxide which add significant cost to the fuel cell system. Supported metals agglomerate under elevated temperature during reforming and decrease the catalyst activity. The catalyst is a perovskite oxide or a Ruddlesden-Popper type oxide containing rare-earth elements, catalytically active first row transition metal elements, and stabilizing elements, such that the catalyst is a single phase in high temperature oxidizing conditions and maintains a primarily perovskite or Ruddlesden-Popper structure under high temperature reducing conditions. The catalyst can also contain alkaline earth dopants, which enhance the catalytic activity of the catalyst, but do not compromise the stability of the perovskite structure.
    Type: Application
    Filed: April 27, 2004
    Publication date: October 14, 2004
    Applicant: The University of Chicago
    Inventors: Michael Krumpelt, Di-Jia Liu
  • Publication number: 20040175313
    Abstract: The present invention provides a method and system for combined conversion of ozone and organic compounds in airplane bleed air. Catalytic converters have previously been used to reduce the levels of ozone in airplane bleed air. However, these converters have not yet provided an efficient system and method for effectively and simultaneously removing both ozone and organic compounds (including hydrocarbons). The present invention accomplishes the goals of removing both harmful substances by providing a washcoat on a single anodized surface layer, wherein the washcoat may contain an active metal oxide which is active for ozone conversion and may be impregnated with an active metal which is active for hydrocarbon and carbon monoxide conversion. Thus, a single system is disclosed that destroys both ozone and hydrocarbons.
    Type: Application
    Filed: March 3, 2003
    Publication date: September 9, 2004
    Applicant: Honeywell International Inc., Law Dept AB2
    Inventors: Belinda S. Foor, Peter M. Michalakos, Di-Jia Liu, Robert Tom
  • Publication number: 20030202916
    Abstract: An aircraft environmental control system includes a catalytic converter having ozone-destroying capability. A surface of the catalytic converter is anodized to form an anodized layer, and the metal oxide layer is washcoated to form a washcoat layer. An ozone destroying catalyst is impregnated in the anodized and washcoat layers. The catalyst may include one or more metals. For example, a bimetallic catalyst may include a precious metal and a transition metal.
    Type: Application
    Filed: May 7, 2003
    Publication date: October 30, 2003
    Inventors: Di-Jia Liu, Daniel R. Winstead, Peter M. Michalakos
  • Publication number: 20030188850
    Abstract: A tube assembly for cooling an incoming fluid stream and destroying pollutants contained therein comprises a tube with a catalytic coating on its inner wall and an arrangement for disrupting laminar flow of the fluid stream as it transits the tube, thereby causing turbulence which increases mass transfer between the gas phase and the catalyst-coated inner surfaces. One embodiment comprises an axially inserted turbulator that is segmented by one or more axially directed cuts, each segment rotated by an offset angle with respect to an adjacent segment, and optionally coated with the catalytic coating. Another embodiment comprises sets of opposed dimples, each set separated from its adjacent set by a linear distance and an axial angle. Such tube assemblies may be advantageously employed in aircraft environmental control systems for conditioning cabin air.
    Type: Application
    Filed: April 9, 2002
    Publication date: October 9, 2003
    Applicant: Honeywell International Inc.,
    Inventors: Di-Jia Liu, Belinda S. Foor, Daniel R. Winstead
  • Patent number: 6584760
    Abstract: Emissions are controlled in a recuperated gas turbine engine using an apparatus and/or method. A fixed boundary recuperator comprises a gas inlet through which flows a gas and a gas outlet in communication with the gas inlet. An air inlet flows an air through the recuperator so that the air is in heat exchange relationship with the gas. An air outlet is in communication with the air inlet. A catalyst is disposed at least at one of a plurality of locations, with the locations selected from the group that includes a position immediately upstream of the recuperator heat exchange core, a position within the recuperator heat exchange core, and a position immediately downstream of the recuperator heat exchange core. At least one parameter of the engine is tuned based on desired NOx emissions and remaining undesired emissions are catalyzed in or immediately adjacent a recuperator.
    Type: Grant
    Filed: September 12, 2000
    Date of Patent: July 1, 2003
    Assignee: Hybrid Power Generation Systems, Inc.
    Inventors: John Lipinski, Karl Fleer, Tony Prophet, Peter Zheng, Di-Jia Liu, George Lester
  • Patent number: 6576199
    Abstract: An aircraft environmental control system includes a catalytic converter having ozone-destroying capability. A surface of the catalytic converter is anodized to form an anodized layer, and the metal oxide layer is washcoated to form a washcoat layer. An ozone destroying catalyst is impregnated in the anodized and washcoat layers. The catalyst may include one or more metals. For example, a bimetallic catalyst may include a precious metal and a transition metal.
    Type: Grant
    Filed: August 23, 1999
    Date of Patent: June 10, 2003
    Assignee: AlliedSignal Inc.
    Inventors: Di-Jia Liu, Daniel R. Winstead, Peter M. Michalakos
  • Patent number: 6550310
    Abstract: A high-sensitivity carbon monoxide sensor is shown and described. The sensor includes a sensing element having a catalyst dispersed over a metal oxide layer. The catalyst is capable of adsorbing carbon monoxide. The sensing element can also include a heater and a temperature sensor. A flow sensor is provided for sensing a flow rate of gas directed at the sensing element. The signal processing module is coupled to the flow sensor and the temperature sensor. A flow sensor sends signals indicative of the flow rate to the processing module while the temperature sensor sends signals indicative of the temperature of the sensing element to the processing module. After carbon monoxide has been adsorbed onto the catalyst and metal oxide layer for a fixed time period, the heater is activated to heat the sensing element above the light-off temperature or at least as high as the oxidation temperature of the adsorbed carbon monoxide.
    Type: Grant
    Filed: November 28, 2000
    Date of Patent: April 22, 2003
    Assignee: Honeywell International Inc.
    Inventors: Di-Jia Liu, Ulrich Bonne, Richard A. Alderman
  • Patent number: 6540843
    Abstract: A method of coating a catalyst layer on a metallic substrate includes preparing a metal oxide and binder slurry to coat onto a metal surface and forming a catalytic layer over the slurry coated surface. The slurry may be made from a binder containing, for example, fully dissolved alumina in the presence of excess nitric acid. The binder may then be mixed with a metal oxide mixture to form the metal oxide-binder slurry. The metal oxide mixture may contain aluminum oxide or partially hydrated aluminum oxide. The metal oxide-binder slurry can be used to coat the surfaces of a variety of metals such as aluminum, titanium, nickel, cobalt, chromium, iron, copper, etc., or their alloys that include brass, as well as stainless steel with or without Al as a component.
    Type: Grant
    Filed: October 20, 2000
    Date of Patent: April 1, 2003
    Assignee: Honeywell International Inc.
    Inventors: Di-Jia Liu, Daniel R. Winstead, Norman Van Den Bussche