Patents by Inventor Diana Facchini

Diana Facchini has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10286120
    Abstract: In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials provide a strong, tough, stiff and lightweight implant. The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
    Type: Grant
    Filed: August 14, 2015
    Date of Patent: May 14, 2019
    Assignee: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus Tomantschger, Gino Palumbo, Diana Facchini
  • Patent number: 9970120
    Abstract: A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.
    Type: Grant
    Filed: January 18, 2016
    Date of Patent: May 15, 2018
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Publication number: 20160130713
    Abstract: A method for electrodepositing a coating/free-standing layer on a workpiece in an electrolytic cell includes moving the workpiece and an anode applicator tool having a consumable anode insert relative to each other; anodically dissolving a metal from the insert and cathodically depositing the metal on the workpiece; providing flow of electrolyte solution through the insert to ensure that greater than 90% of the anodic reaction is represented by dissolution of the metal; recirculating collected electrolyte solution exiting the electrolytic cell through the insert; applying an electric current to the electrolytic cell; maintaining a concentration of the anodically dissolved metal within ±25% of each Ampere-hour per liter of electroplating solution; and creating a cathodic electrodeposit on the workpiece which includes the anodically dissolved metal, the chemical composition of the deposit varying by less than 25% in the deposition direction over a selected thickness of up to 25 microns of the deposit.
    Type: Application
    Filed: January 18, 2016
    Publication date: May 12, 2016
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Patent number: 9303322
    Abstract: Articles containing fine-grained and/or amorphous metallic coatings/layers on at least part of their exposed surfaces are imprinted with surface structures to raise the contact angle for water in the imprinted areas at room temperature by equal to or greater than 10°, when compared to the flat and smooth metallic material surface of the same composition.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: April 5, 2016
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini
  • Publication number: 20160038653
    Abstract: In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials provide a strong, tough, stiff and lightweight implant. The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
    Type: Application
    Filed: August 14, 2015
    Publication date: February 11, 2016
    Applicant: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus TOMANTSCHGER, Gino PALUMBO, Diana FACCHINI
  • Patent number: 9249521
    Abstract: Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte.
    Type: Grant
    Filed: November 4, 2011
    Date of Patent: February 2, 2016
    Assignee: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Patent number: 9119906
    Abstract: In-vivo biodegradable medical implants, containing at least in part at least partially fine-grained metallic materials that are strong, tough, stiff and lightweight, are disclosed The in-vivo biodegradable implants are used in a number of stent applications, for fracture fixation, sutures and the like. The in-vivo biodegradable medical implants enable the reduction of implant size and weight and consequently result in reducing the release of implant degradation products into the body.
    Type: Grant
    Filed: September 24, 2008
    Date of Patent: September 1, 2015
    Assignee: INTEGRAN TECHNOLOGIES, INC.
    Inventors: Klaus Tomantschger, Gino Palumbo, Diana Facchini
  • Publication number: 20150111673
    Abstract: The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight sporting goods exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched.
    Type: Application
    Filed: October 14, 2014
    Publication date: April 23, 2015
    Applicant: Integran Technologies Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nasarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared Victor, Uwe Erb
  • Patent number: 8906515
    Abstract: Metal-clad polymer articles containing structural fine-grained and/or amorphous metallic coatings/layers optionally containing solid particulates dispersed therein, are disclosed. The fine-grained and/or amorphous metallic coatings are particularly suited for strong and lightweight articles, precision molds, sporting goods, automotive parts and components exposed to thermal cycling although the coefficient of linear thermal expansion (CLTE) of the metallic layer and the substrate are mismatched. The interface between the metallic layer and the polymer is suitably pretreated to withstand thermal cycling without failure.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: December 9, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Klaus Tomantschger, Jonathan McCrea, Nandakumar Nagarajan, Francisco Gonzalez, Gino Palumbo, Konstantinos Panagiotopoulos, Herath Katugaha, Diana Facchini, Jared J. Victor, Uwe Erb
  • Patent number: 8784713
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Grant
    Filed: May 31, 2013
    Date of Patent: July 22, 2014
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Patent number: 8691397
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
    Type: Grant
    Filed: October 31, 2012
    Date of Patent: April 8, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger
  • Patent number: 8663819
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness chromium coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
    Type: Grant
    Filed: November 9, 2012
    Date of Patent: March 4, 2014
    Assignee: Integran Technologies, Inc.
    Inventors: Francisco Gonzalez, Diana Facchini, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger
  • Publication number: 20130337288
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness Cr coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial and hydrophobic properties.
    Type: Application
    Filed: August 26, 2013
    Publication date: December 19, 2013
    Applicant: Integran Technologies Inc.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger, Nandakumar Nagarajan, Jared J. Victor, Uwe Erb
  • Publication number: 20130256944
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Application
    Filed: May 31, 2013
    Publication date: October 3, 2013
    Applicant: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Patent number: 8545994
    Abstract: An article includes an electrodeposited metallic material including Co with a minimum content of 75% by weight. The metallic material has a microstructure which is fine-grained with an average grain size between 2 and 5,000 nm and/or an amorphous microstructure. The metallic material forms at least part of an exposed surface of the article. The metallic material has an inherent contact angle for water of less than 90 degrees at room temperature when measured on a smooth exposed surface portion of the metallic material which has a maximum surface roughness Ra of 0.25 microns. The metallic material has an exposed patterned surface portion having surface structures having a height of between at least 5 microns to about 100 microns incorporated therein to increase the contact angle for water at room temperature of the exposed patterned surface portion to over 100 degrees.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: October 1, 2013
    Assignee: Integran Technologies Inc.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger, Nandakumar Nagarajan, Jared J. Victor, Uwe Erb
  • Patent number: 8486319
    Abstract: Super-hydrophobic and self-cleaning articles produced by imprinting exposed surfaces with suitable fine-grained and/or amorphous metallic embossing dies to transfer a dual surface structure, including ultra-fine features less than or equal to 100 nm embedded in and overlaying a surface topography with macro-surface structures greater than or equal to 1 micron are disclosed.
    Type: Grant
    Filed: May 24, 2010
    Date of Patent: July 16, 2013
    Assignee: Integran Technologies Inc.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini, Mioara Neacsu
  • Publication number: 20130112563
    Abstract: Anode applicators include consumable anodes, that can be operated in a non-stationary mode and are insensitive to orientation, are used in selective plating/brush electrodeposition of coatings or free-standing components. The flow-through dimensionally-stable, consumable anodes employed are perforated/porous to provide relatively unimpeded electrolyte flow and operate at low enough electrochemical potentials to provide for anodic metal/alloy dissolution avoiding undesired anodic reactions. The consumable anodes include consumable anode material(s) in high surface area to reduce the local anodic current density. During electroplating, sufficient electrolyte is pumped through the consumable anodes at sufficient flow rates to minimize concentration gradient and/or avoid the generation of chlorine and/or oxygen gas and/or undesired reaction such as the anodic oxidation of P-bearing ions in the electrolyte.
    Type: Application
    Filed: November 4, 2011
    Publication date: May 9, 2013
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Klaus Tomantschger, Diana Facchini, Francisco Gonzalez, Jonathan McCrea, John Kratochwil, Dan Woloshyn, Yusuf Bismilla, Nandakumar Nagarajan, Mioara Neacsu
  • Patent number: 8367217
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance compared to either uncoated or equivalent thickness chromium coated substrate. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
    Type: Grant
    Filed: August 27, 2009
    Date of Patent: February 5, 2013
    Assignee: Integran Technologies, Inc.
    Inventors: Francisco Gonzalez, Diana Facchini, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger
  • Patent number: 8309233
    Abstract: Free standing articles or articles at least partially coated with substantially porosity free, fine-grained and/or amorphous Co-bearing metallic materials optionally containing solid particulates dispersed therein, are disclosed. The electrodeposited metallic layers and/or patches comprising Co provide, enhance or restore strength, wear and/or lubricity of substrates without reducing the fatigue performance. The fine-grained and/or amorphous metallic coatings comprising Co are particularly suited for articles exposed to thermal cycling, fatigue and other stresses and/or in applications requiring anti-microbial properties.
    Type: Grant
    Filed: June 2, 2009
    Date of Patent: November 13, 2012
    Assignee: Integran Technologies, Inc.
    Inventors: Diana Facchini, Francisco Gonzalez, Jonathan McCrea, Mike Uetz, Gino Palumbo, Klaus Tomantschger
  • Publication number: 20110287223
    Abstract: Articles containing fine-grained and/or amorphous metallic coatings/layers on at least part of their exposed surfaces are imprinted with surface structures to raise the contact angle for water in the imprinted areas at room temperature by equal to or greater than 10°, when compared to the flat and smooth metallic material surface of the same composition.
    Type: Application
    Filed: May 24, 2010
    Publication date: November 24, 2011
    Applicant: INTEGRAN TECHNOLOGIES INC.
    Inventors: Jared J. Victor, Uwe Erb, Klaus Tomantschger, Nandakumar Nagarajan, Diana Facchini