Patents by Inventor Diana Lewis

Diana Lewis has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240115781
    Abstract: Systems and apparatuses for blood oxygenation are disclosed. A system includes a first layer defining a plurality of banks of first channels each extending in a first direction. The plurality of banks of first channels are configured to receive blood via a trunk channel. The system includes a second layer defining a bank of second channels extending in a second direction. The bank of second channels are configured to receive oxygen. The first direction is different from the second direction. The system includes a membrane disposed between the first layer and the second layer and configured to cause the oxygen to permeate from the second layer to the first layer to oxygenate the blood.
    Type: Application
    Filed: October 3, 2023
    Publication date: April 11, 2024
    Applicant: The Charles Stark Draper Laboratory, Inc.
    Inventors: Brett Isenberg, Else Vedula, David Sutherland, Diana Lewis, Jose Santos, WeiXuan Lai, Ernie Kim, Beau Landis, Jeffrey Borenstein, Bryan Teece, Samuel Blumenstiel, Joseph Urban
  • Patent number: 10145627
    Abstract: A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
    Type: Grant
    Filed: March 31, 2014
    Date of Patent: December 4, 2018
    Assignee: NANOCOMP TECHNOLOGIES, INC.
    Inventors: David S. Lashmore, Diana Lewis
  • Publication number: 20160161196
    Abstract: A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
    Type: Application
    Filed: March 31, 2014
    Publication date: June 9, 2016
    Applicant: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Diana Lewis
  • Publication number: 20150183642
    Abstract: The present invention relates to systems and methods for generating nanoscopically aligned carbon nanotubes in yarns, tapes and sheets. Some embodiments relate to methods and systems to allow in situ alignment of the tubes within the growth chamber. In particular, processes for in situ alignment include: (1) gas flow alignment using gas lenses introduced within the reaction tube, (2) electrostatic alignment using electrostatic lenses surrounding the reaction tube, (3) gas flow alignment by convergent flow within the reaction tube, (4) placing catalysts on a fixed substrate and flowing reaction gas parallel to the substrate. Other embodiments involve post processing of the CNT material in order to align the materials once it has been produced.
    Type: Application
    Filed: December 1, 2014
    Publication date: July 2, 2015
    Inventors: David S. Lashmore, Mark Schauer, Diana Lewis, Thomas Van Vechten, David Degtiarov
  • Patent number: 8722171
    Abstract: A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
    Type: Grant
    Filed: January 4, 2012
    Date of Patent: May 13, 2014
    Assignee: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Diana Lewis
  • Publication number: 20120312343
    Abstract: Systems for producing electrical energy from heat are disclosed. The system may include a carbon-nanotube based pathway along which heat from a source can be directed. An array of thermoelectric elements for generating electrical energy may be situated about a surface of the pathway to enhance the generation of electrical energy. A carbon nanotube-based, heat-dissipating member may be in thermal communication with the array of thermoelectric elements and operative to create a heat differential between the thermoelectric elements and the pathway by dissipating heat from the thermoelectric elements. The heat differential may allow the thermoelectric elements to generate the electrical energy. Methods for producing electrical energy are also disclosed.
    Type: Application
    Filed: April 12, 2012
    Publication date: December 13, 2012
    Applicant: Nanocomp Technologies, Inc.
    Inventors: Tom VanVechten, David S. Lashmore, Diana Lewis
  • Publication number: 20120171411
    Abstract: A nanotube-based insulator is provided having thermal insulating properties. The insulator can include a plurality of nanotube sheets stacked on top of one another. Each nanotube sheet can be defined by a plurality of carbon nanotubes. The plurality of carbon nanotubes can be configured so as to decrease normal-to-plane thermal conductivity while permitting in-plane thermal conductivity. A plurality of spacers can be situated between adjacent nanotube sheets so as to reduce interlayer contact between the nanotubes in each sheet. The plurality of spacers can be ceramic or alumina dots or provided by texturing the nanotube sheets.
    Type: Application
    Filed: January 4, 2012
    Publication date: July 5, 2012
    Applicant: Nanocomp Technologies, Inc.
    Inventors: David S. Lashmore, Diana Lewis
  • Publication number: 20060293232
    Abstract: The present invention relates generally to novel, selectable hybrid polypeptides useful as agents for the treatment and prevention of metabolic diseases and disorders which can be alleviated by control plasma glucose levels, insulin levels, and/or insulin secretion, such as diabetes and diabetes-related conditions. Such conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, insulin-resistance, obesity, and diabetes mellitus of any kind, including type 1, type 2, and gestational diabetes.
    Type: Application
    Filed: August 17, 2005
    Publication date: December 28, 2006
    Applicant: Amylin Pharmaceuticals, Inc.
    Inventors: Odile Levy, Michael Hanley, Carolyn Jodka, Diana Lewis, Christopher Soares, Soumitra Ghosh, Lawrence D'Souza, David Parkes, Christine Mack
  • Publication number: 20060094652
    Abstract: The present invention relates generally to novel, selectable hybrid polypeptides useful as agents for the treatment and prevention of metabolic diseases and disorders which can be alleviated by control plasma glucose levels, insulin levels, and/or insulin secretion, such as diabetes and diabetes-related conditions. Such conditions and disorders include, but are not limited to, hypertension, dyslipidemia, cardiovascular disease, eating disorders, insulin-resistance, obesity, and diabetes mellitus of any kind, including type 1, type 2, and gestational diabetes.
    Type: Application
    Filed: February 11, 2005
    Publication date: May 4, 2006
    Inventors: Odile Levy, Michael Hanley, Carolyn Jodka, Diana Lewis, Christopher Soares, Soumitra Ghosh, Lawrence D'Souza, David Parkes, Christine Mack
  • Patent number: 6508979
    Abstract: A method for fabricating or prototyping a nanoscale object is disclosed. The method includes defining a sequence of nanolayers that represent the nanoscale object, constructing a current nanolayer on a first surface, and depositing a sacrificial layer to cover the first surface but not the nanolayer. The nanolayer represents a slice of the nanoscale object. The nanolayer and the sacrificial layer provide a second surface on which a next nanolayer is constructed. The above construction and deposition steps are repeated if the next nanolayer is not the last nanolayer. The method also includes removing the sacrificial layers to produce the nanoscale object.
    Type: Grant
    Filed: June 30, 2000
    Date of Patent: January 21, 2003
    Assignee: University of Southern California
    Inventors: Aristides A. G. Requicha, Bruce E. Koel, Roland Resch, Diana Lewis, Mark E. Thompson