Patents by Inventor Diana Young

Diana Young has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 10882642
    Abstract: A method of the producing artificial gravity in an electromagnetized environment is provided with a bodysuit, a corridor, a plurality of mobile electromagnets, a plurality of mobile inertial measurement units (IMUs), a plurality of first fixed electromagnets, second fixed electromagnets, and at least one computing unit. The first fixed magnets and the second fixed magnets are integrated throughout the corridor to continuously generate a uniform magnetic field through the corridor. The mobile electromagnets are integrated throughout the bodysuit to electromagnetically interact with the first fixed electromagnets and the second fixed electromagnets, which simulates gravity as the bodysuit moves through the corridor. The mobile IMUs are integrated to the bodysuit so that the mobile IMUs sends spatial positioning and orientation data to the computing unit.
    Type: Grant
    Filed: February 1, 2019
    Date of Patent: January 5, 2021
    Inventor: MaryAlice Diana Young
  • Patent number: 10527507
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The unidirectional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Grant
    Filed: November 27, 2017
    Date of Patent: January 7, 2020
    Assignee: President and Fellows of Harvard College
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Conor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Publication number: 20190233138
    Abstract: A method of the producing artificial gravity in an electromagnetized environment is provided with a bodysuit, a corridor, a plurality of mobile electromagnets, a plurality of mobile inertial measurement units (IMUs), a plurality of first fixed electromagnets, second fixed electromagnets, and at least one computing unit. The first fixed magnets and the second fixed magnets are integrated throughout the corridor to continuously generate a uniform magnetic field through the corridor. The mobile electromagnets are integrated throughout the bodysuit to electromagnetically interact with the first fixed electromagnets and the second fixed electromagnets, which simulates gravity as the bodysuit moves through the corridor. The mobile IMUs are integrated to the bodysuit so that the mobile IMUs sends spatial positioning and orientation data to the computing unit.
    Type: Application
    Filed: February 1, 2019
    Publication date: August 1, 2019
    Inventor: MaryAlice Diana Young
  • Publication number: 20180143091
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The unidirectional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Application
    Filed: November 27, 2017
    Publication date: May 24, 2018
    Applicant: President and Fellows of Harvard College
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Conor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Patent number: 9841331
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The uni-directional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Grant
    Filed: September 24, 2012
    Date of Patent: December 12, 2017
    Assignee: President and Fellows of Harvard College
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Conor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Publication number: 20140238153
    Abstract: An elastic strain sensor can be incorporated into an artificial skin that can sense flexing by the underlying support structure of the skin to detect and track motion of the support structure. The unidirectional elastic strain sensor can be formed by filling two or more channels in an elastic substrate material with a conductive liquid. At the ends of the channels, a loop port connects the channels to form a serpentine channel. The channels extend along the direction of strain and the loop portions have sufficiently large cross-sectional area in the direction transverse to the direction of strain that the sensor is unidirectional. The resistance is measured at the ends of the serpentine channel and can be used to determine the strain on the sensor. Additional channels can be added to increase the sensitivity of the sensor. The sensors can be stacked on top of each other to increase the sensitivity of the sensor.
    Type: Application
    Filed: September 24, 2012
    Publication date: August 28, 2014
    Applicant: PRESIDENT AND FELLOWS OF HARVARD COLLEGE
    Inventors: Robert J. Wood, Yong-Lae Park, Carmel S. Majidi, Bor-rong Chen, Leia Stirling, Connor James Walsh, Radhika Nagpal, Diana Young, Yigit Menguc
  • Patent number: 8109146
    Abstract: There are disclosed systems and methods for measuring the bowing parameters and the bowed string dynamics of a player playing a bowed string instrument. A system for measuring the bowing parameters and the bowed string dynamics may comprise a computer, a bow system and a base component. The bow system may comprise a force sensing mechanism and a bow board. The bow board may comprise an acceleration and angular velocity sensing mechanism, a position and speed sensing mechanism, a data communication module, and a power module. The base component may comprise an acceleration and angular velocity sensing mechanism, a position and speed sensing mechanism, a data communication module, and a power module.
    Type: Grant
    Filed: February 21, 2008
    Date of Patent: February 7, 2012
    Assignee: Massachusetts Institute of Technology
    Inventor: Diana Young
  • Publication number: 20090216483
    Abstract: There are disclosed systems and methods for measuring the bowing parameters and the bowed string dynamics of a player playing a bowed string instrument. A system for measuring the bowing parameters and the bowed string dynamics may comprise a computer, a bow system and a base component. The bow system may comprise a force sensing mechanism and a bow board. The bow board may comprise an acceleration and angular velocity sensing mechanism, a position and speed sensing mechanism, a data communication module, and a power module. The base component may comprise an acceleration and angular velocity sensing mechanism, a position and speed sensing mechanism, a data communication module, and a power module.
    Type: Application
    Filed: February 21, 2008
    Publication date: August 27, 2009
    Inventor: Diana Young