Patents by Inventor Diane G. Mills

Diane G. Mills has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20030204808
    Abstract: A multi-user turbo decoder combining multi-user detection and forward error correction decoding is disclosed in which randomly ordered indices are assigned to interfering users before a decoding tree is constructed in the multi-user decoder for each symbol interval for every iteration and for each new block of data. By building the decoding tree in this manner for each symbol interval, a reduced complexity search is more likely to include paths (and nodes) in the tree containing the correct value for the channel symbols. All users thus share in the benefit of root level placement in the decoding tree. In an alternative embodiment of the invention only one decoding pass is accomplished and there is no re-construction of the decoding tree based on further random index ordering for iterative decoding. No modification to the transmitted signaling method is needed.
    Type: Application
    Filed: April 29, 2002
    Publication date: October 30, 2003
    Inventor: Diane G. Mills
  • Publication number: 20030193966
    Abstract: A multi-user turbo decoder combining multi-user detection and forward error correction decoding is disclosed that utilizes iterative decoding of received, interfering signals, and the construction of a decoding tree of the decoder is changed for each iteration of the decoding based on the previous conditional probability estimates of the value of the data bits of each signal making up the received, interfering signals. Before each iteration of multi-user decoding, a probability estimate is calculated that the value of the bit in a signal has a certain value for all of the data bits. Using the probability estimate a new decoding tree is constructed before each iteration of decoding such that the signal bit having the most reliable estimate is assigned to the lowest or root level of the tree.
    Type: Application
    Filed: April 11, 2002
    Publication date: October 16, 2003
    Inventor: Diane G. Mills
  • Publication number: 20030138035
    Abstract: A system is presented that provides real-time performance for iterative multi-user detectors, such as Turbo MUDs, which are used to separate simultaneous transmissions on the same frequency, by permitting the MUD to use a less computationally intense, fast-processing algorithm and to correct for errors caused by the fast processing. In order to reduce the errors, a voting system is coupled to the output of the multi-user detector within the iterative system. The voting system provides confidence values on a bit-by-bit basis for the estimates made by the multi-user detector, with the confidence values then being utilized as soft inputs to a bank of conventional single-user decoders.
    Type: Application
    Filed: January 23, 2002
    Publication date: July 24, 2003
    Applicant: BAE SYSTEMS Information and Electronic Systems Integration, Inc.
    Inventor: Diane G. Mills
  • Publication number: 20030138065
    Abstract: A real-time multi-user detection (MUD) receiver processing simultaneous digitally modulated interferers and transmissions in the same frequency optimizing performance for heavily loaded and overloaded multiple access systems by implementing an iterative TurboMUD receiver using tree-pruning, including confidence ordering, power-ordering, and a voting procedure. On the first iteration, user indices are ordered according to received powers. On subsequent iterations, the voting system provides soft decisions or confidence values utilized as soft inputs to single-user decoders. Voting is computationally attractive and allows the bank of decoders to operate on soft values, improving performance and reducing the number of turboMUD iterations. The bank of soft output error correction decoders produces an improved set of soft decisions or confidence values corresponding to the channel bits transmitted by each interfering user.
    Type: Application
    Filed: July 29, 2002
    Publication date: July 24, 2003
    Inventors: Diane G. Mills, Rachel E. Learned