Patents by Inventor Diane Hollenbaugh

Diane Hollenbaugh has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8598320
    Abstract: The present invention provides compositions and methods for treating disorders of cholesterol and lipid metabolism by administration of an anti-PCSK9 antibody or a peptide inhibitor of PCSK9.
    Type: Grant
    Filed: October 27, 2008
    Date of Patent: December 3, 2013
    Assignee: Merck Sharp & Dohme Corp.
    Inventors: Joseph A. Hedrick, Frederick James Monsma, Jr., Tatyana Churakova, Diane Hollenbaugh
  • Patent number: 8580936
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: September 7, 2011
    Date of Patent: November 12, 2013
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 8501191
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: April 3, 2012
    Date of Patent: August 6, 2013
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Elizabeth Bosch, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra
  • Publication number: 20130065276
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: September 7, 2011
    Publication date: March 14, 2013
    Inventors: Lewis T. WILLIAMS, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20120301921
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: April 3, 2012
    Publication date: November 29, 2012
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 8173134
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: June 10, 2011
    Date of Patent: May 8, 2012
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Elizabeth Bosch, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra
  • Publication number: 20110319324
    Abstract: The present invention relates to therapeutic uses of ErbB ligands, including betacellulin. The therapeutic uses include methods of using ErbB ligand family compounds alone, or in conjunction with other agents, for reducing blood glucose levels, treating Type I and Type II diabetes, obesity, muscle wasting diseases, and cardiotoxicity.
    Type: Application
    Filed: November 29, 2010
    Publication date: December 29, 2011
    Inventors: Junyu Lin, Srinivas Kothakota, Ge Wu, Stephen Doberstein, Thomas Brennan, Lorianne Masuoka, Minmin Qin, Shannon Marshall, Yan Wang, Diane Hollenbaugh, Lewis T. Williams
  • Publication number: 20110281302
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: June 10, 2011
    Publication date: November 17, 2011
    Inventors: Lewis T. WILLIAMS, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 7982014
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: January 5, 2010
    Date of Patent: July 19, 2011
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20110033465
    Abstract: The present invention provides compositions and methods for treating disorders of cholesterol and lipid metabolism by administration of an anti-PCSK9 antibody or a peptide inhibitor of PCSK9.
    Type: Application
    Filed: October 27, 2008
    Publication date: February 10, 2011
    Applicant: SCHERING CORPORATION
    Inventors: Joseph A. Hedrick, Frederick James Monsma, JR., Tatyana Churakova, Diane Hollenbaugh
  • Publication number: 20100158911
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: January 5, 2010
    Publication date: June 24, 2010
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Patent number: 7678890
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Grant
    Filed: July 24, 2006
    Date of Patent: March 16, 2010
    Assignee: Five Prime Therapeutics, Inc.
    Inventors: Elizabeth Bosch, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra
  • Publication number: 20080171689
    Abstract: The invention provides FGFR fusion proteins, methods of making them, and methods of using them to treat proliferative disorders, including cancers and disorders of angiogenesis. The FGFR fusion molecules can be made in CHO cells and may comprise deletion mutations in the extracellular domains of the FGFRs which improve their stability. These fusion proteins inhibit the growth and viability of cancer cells in vitro and in vivo. The combination of the relatively high affinity of these receptors for their ligand FGFs and the demonstrated ability of these decoy receptors to inhibit tumor growth is an indication of the clinical value of the compositions and methods provided herein.
    Type: Application
    Filed: July 24, 2006
    Publication date: July 17, 2008
    Inventors: Lewis T. Williams, Elizabeth Bosch, Stephen Doberstein, Kevin Hestir, Diane Hollenbaugh, Ernestine Lee, Minmin Qin, Ali Sadra, Justin Wong, Ge Wu, Hongbing Zhang
  • Publication number: 20070054851
    Abstract: The present invention relates to therapeutic uses of ErbB ligands, including betacellulin. The therapeutic uses include methods of using ErbB ligand family compounds alone, or in conjunction with other agents, for reducing blood glucose levels, treating Type I and Type II diabetes, obesity, muscle wasting diseases, and cardiotoxicity.
    Type: Application
    Filed: May 30, 2006
    Publication date: March 8, 2007
    Inventors: Junyu Lin, Srinivas Kothakota, Ge Wu, Stephen Doberstein, Thomas Brennan, Lorianne Masuoka, Minmin Qin, Shannon Marshall, Yan Wang, Diane Hollenbaugh, Lewis Williams
  • Publication number: 20050202011
    Abstract: The present invention provides a method for inhibiting an immune reponse and a method for inhibiting rejection of transplanted tissues. This method comprises preventing an endogenous molecule on a cell selected from the group consisting of gp39 and CD40 antigens from binding its endogenous ligand and preventing an endogenous molecule on a cell selected from the group consisting of CTLA4, CD28, and B7 antigens from binding its endogenous ligand. The prevention of such molecules from binding their ligand thereby blocks two independent signal pathways and inhibits the immune response resulting in transplanted tissue rejection.
    Type: Application
    Filed: January 4, 2005
    Publication date: September 15, 2005
    Inventors: Christian Larsen, Alejandro Aruffo, Diane Hollenbaugh, Peter Linsley, Jeffrey Ledbetter, Thomas Pearson
  • Publication number: 20050202022
    Abstract: A humanized antibody that binds to human 4-1BB and that allows binding of human 4-1BB to a human 4-1BB ligand. In one aspect, the antibody is an IgG4 antibody. Also provided is a method for treating cancer in a subject comprising administering a therapeutically effective amount of the antibody to said subject.
    Type: Application
    Filed: March 7, 2005
    Publication date: September 15, 2005
    Inventors: Maria Kunkel, Subinay Ganguly, Ralph Abraham, Diane Hollenbaugh, Jill Rillema, Barbara Thorne, Walter Shuford, Robert Mittler
  • Patent number: 6413514
    Abstract: A method for the treatment of T cell mediated disorders is described. The method involves administering to a subject a therapeutically effective amount of an anti-human CD40 antibody. Disease states suitable for treatment with this method include graft versus host disease and transplant rejection and auto immune disease such as type I diabetes, psoriasis, multiple sclerosis, rheumatoid arthritis, systemic lupus erythematosus, and myesthenia gravis.
    Type: Grant
    Filed: December 17, 1999
    Date of Patent: July 2, 2002
    Assignee: Bristol-Myers Squibb Company
    Inventors: Alejandro A. Aruffo, Diane Hollenbaugh, Anthony W. Siadak, Karen K. Berry, Linda Harris, Barbara A. Thorne, Jurgen Bajorath
  • Patent number: 6312693
    Abstract: The Applicants have discovered humanized anti-human CD40 antibodies which block the interaction between gp39 and CD40. The anti-CD40 antibodies of the present invention are effective in modulating humoral immune responses against T cell-dependent antigens, collagen induced arthritis, and skin transplantation, and are also useful for their anti-inflammatory properties.
    Type: Grant
    Filed: February 10, 1999
    Date of Patent: November 6, 2001
    Inventors: Alejandro A. Aruffo, Diane Hollenbaugh, Anthony W. Siadak, Karen K. Berry, Linda Harris, Barbara A. Thorne, Jurgen Bajorath, William D. Huse, Herren Wu, Jeffry D. Watkins
  • Patent number: 6051228
    Abstract: The Applicants have discovered a novel antibody, more specifically a chimerized anti-human CD40 monoclonal antibody, which blocks the interaction between gp39 and CD40. The anti-CD40 antibodies of the present invention are effective in modulating humoral immune responses against T cell-dependent antigens, collagen induced arthritis, and skin transplantation, and are also useful for their anti-inflammatory properties.
    Type: Grant
    Filed: February 19, 1998
    Date of Patent: April 18, 2000
    Assignee: Bristol-Myers Squibb Co.
    Inventors: Alejandro A. Aruffo, Diane Hollenbaugh, Anthony W. Siadak, Karen K. Berry, Linda Harris, Barbara A. Thorne, Jurgen Bajorath
  • Patent number: 5945513
    Abstract: The present invention relates to fusion proteins having gp39 protein sequences, which fusion proteins bind to the B cell antigen, CD40. More specifically, the invention relates to fusion proteins having gp39 protein sequences attached to a polypeptide having an amino terminal secretory signal sequence to allow export of the fusion protein out of the recombinant host cell in which it is produced. The fusion proteins of this invention may be useful for promoting B cell proliferation.
    Type: Grant
    Filed: July 30, 1996
    Date of Patent: August 31, 1999
    Assignee: Bristol-Myers Squibb
    Inventors: Alejandro Aruffo, Diane Hollenbaugh, Jeffrey A. Ledbetter