Patents by Inventor Dianmin Lin

Dianmin Lin has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220365482
    Abstract: An optical device includes an optical component (e.g., a polarization volume hologram, a geometric phase device, or a polarization-insensitive diffractive optical element) having a uniform thickness and configured to modify a wavefront of a light beam that includes light in two or more wavelengths visible to human eyes, where the optical component has a chromatic aberration between the two or more wavelengths. The optical device also includes a metasurface on the optical component. The metasurface includes a plurality of nanostructures configured to modify respective phases of incident light at a plurality of regions of the metasurface, where the plurality of nanostructures is configured to, at each region of the plurality of regions, add a respective phase delay for each of the two or more wavelengths to correct the chromatic aberration between the two or more wavelengths.
    Type: Application
    Filed: May 17, 2021
    Publication date: November 17, 2022
    Inventors: Hao YU, Dianmin LIN, Lu LU, Xiayu FENG, Mengfei WANG, Barry David SILVERSTEIN
  • Publication number: 20220283438
    Abstract: An optical system comprises an optically transmissive substrate comprising a metasurface which comprises a grating comprising a plurality of unit cells. Each unit cell comprises a laterally-elongated first nanobeam having a first width; and a laterally-elongated second nanobeam spaced apart from the first nanobeam by a gap, the second nanobeam having a second width larger than the first width. A pitch of the unit cells is 10 nm to 1 ?m. The heights of the first and the second nanobeams are: 10 nm to 450 nm where a refractive index of the substrate is more than 3.3; and 10 nm to 1 ?m where the refractive index is 3.3 or less.
    Type: Application
    Filed: May 20, 2022
    Publication date: September 8, 2022
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20220197040
    Abstract: An example head-mounted display device includes a plurality of optical elements in optical communication. The optical elements are configured to project an image in a field of view of a user wearing the head-mounted display device. A first optical element is configured to receive light from a second optical element. The first optical element defines a grating at along a periphery of the first optical element. The grating includes a plurality of protrusions extending from a base portion of the first optical element. The protrusions include a first material having a first optical dispersion profile for visible wavelengths of light. The grating also includes a second material disposed between at least some of the plurality of protrusions along the base portion of the first optical element. The second material has a second optical dispersion profile for visible wavelengths of light.
    Type: Application
    Filed: March 10, 2022
    Publication date: June 23, 2022
    Inventors: Pierre St. Hilaire, Mohammadreza Khorasaninejad, Dianmin Lin
  • Patent number: 11360306
    Abstract: An optical system comprises an optically transmissive substrate comprising a metasurface which comprises a grating comprising a plurality of unit cells. Each unit cell comprises a laterally-elongated first nanobeam having a first width; and a laterally-elongated second nanobeam spaced apart from the first nanobeam by a gap, the second nanobeam having a second width larger than the first width. A pitch of the unit cells is 10 nm to 1 ?m. The heights of the first and the second nanobeams are: 10 nm to 450 nm where a refractive index of the substrate is more than 3.3; and 10 nm to 1 ?m where the refractive index is 3.3 or less.
    Type: Grant
    Filed: January 2, 2020
    Date of Patent: June 14, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20220163709
    Abstract: Metasurfaces provide compact optical elements in head-mounted display systems to, e.g., incouple light into or outcouple light out of a waveguide. The metasurfaces may be formed by a plurality of repeating unit cells, each unit cell comprising two sets or more of nanobeams elongated in crossing directions: one or more first nanobeams elongated in a first direction and a plurality of second nanobeams elongated in a second direction. As seen in a top-down view, the first direction may be along a y-axis, and the second direction may be along an x-axis. The unit cells may have a periodicity in the range of 10 nm to 1 ?m, including 10 nm to 500 nm or 300 nm to 500 nm. Advantageously, the metasurfaces provide diffraction of light with high diffraction angles and high diffraction efficiencies over a broad range of incident angles and for incident light with circular polarization.
    Type: Application
    Filed: February 7, 2022
    Publication date: May 26, 2022
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20220146745
    Abstract: A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
    Type: Application
    Filed: January 24, 2022
    Publication date: May 12, 2022
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11300791
    Abstract: An example head-mounted display device includes a plurality of optical elements in optical communication. The optical elements are configured to project an image in a field of view of a user wearing the head-mounted display device. A first optical element is configured to receive light from a second optical element. The first optical element defines a grating at along a periphery of the first optical element. The grating includes a plurality of protrusions extending from a base portion of the first optical element. The protrusions include a first material having a first optical dispersion profile for visible wavelengths of light. The grating also includes a second material disposed between at least some of the plurality of protrusions along the base portion of the first optical element. The second material has a second optical dispersion profile for visible wavelengths of light.
    Type: Grant
    Filed: July 2, 2020
    Date of Patent: April 12, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Pierre St. Hilaire, Mohammadreza Khorasaninejad, Dianmin Lin
  • Publication number: 20220099976
    Abstract: A display system includes a waveguide assembly having a plurality of waveguides, each waveguide associated with an in-coupling optical element configured to in-couple light into the associated waveguide. A projector outputs light from one or more spatially-separated pupils, and at least one of the pupils outputs light of two different ranges of wavelengths. The in-coupling optical elements for two or more waveguides are inline, e.g. vertically aligned, with each other so that the in-coupling optical elements are in the path of light of the two different ranges of wavelengths. The in-coupling optical element of a first waveguide selectively in-couples light of one range of wavelengths into the waveguide, while the in-coupling optical element of a second waveguide selectively in-couples light of another range of wavelengths. Absorptive color filters are provided forward of an in-coupling optical element to limit the propagation of undesired wavelengths of light to that in-coupling optical element.
    Type: Application
    Filed: January 29, 2020
    Publication date: March 31, 2022
    Inventors: Mohammadreza Khorasaninejad, Victor Kai Liu, Dianmin Lin, Christophe Peroz, Pierre St. Hilaire
  • Patent number: 11243338
    Abstract: Metasurfaces provide compact optical elements in head-mounted display systems to, e.g., incouple light into or outcouple light out of a waveguide. The metasurfaces may be formed by a plurality of repeating unit cells, each unit cell comprising two sets or more of nanobeams elongated in crossing directions: one or more first nanobeams elongated in a first direction and a plurality of second nanobeams elongated in a second direction. As seen in a top-down view, the first direction may be along a y-axis, and the second direction may be along an x-axis. The unit cells may have a periodicity in the range of 10 nm to 1 ?m, including 10 nm to 500 nm or 300 nm to 500 nm. Advantageously, the metasurfaces provide diffraction of light with high diffraction angles and high diffraction efficiencies over a broad range of incident angles and for incident light with circular polarization.
    Type: Grant
    Filed: November 4, 2019
    Date of Patent: February 8, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov
  • Patent number: 11231544
    Abstract: A display system comprises a waveguide having light incoupling or light outcoupling optical elements formed of a metasurface. The metasurface is a multilevel (e.g., bi-level) structure having a first level defined by spaced apart protrusions formed of a first optically transmissive material and a second optically transmissive material between the protrusions. The metasurface also includes a second level formed by the second optically transmissive material. The protrusions on the first level may be patterned by nanoimprinting the first optically transmissive material, and the second optically transmissive material may be deposited over and between the patterned protrusions. The widths of the protrusions and the spacing between the protrusions may be selected to diffract light, and a pitch of the protrusions may be 10-600 nm.
    Type: Grant
    Filed: November 2, 2016
    Date of Patent: January 25, 2022
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20210141146
    Abstract: Display devices include waveguides with metasurfaces as in-coupling and/or out-coupling optical elements. The metasurfaces may be formed on a surface of the waveguide and may include a plurality or an array of sub-wavelength-scale (e.g., nanometer-scale) protrusions. Individual protrusions may include horizontal and/or vertical layers of different materials which may have different refractive indices, allowing for enhanced manipulation of light redirecting properties of the metasurface. Some configurations and combinations of materials may advantageously allow for broadband metasurfaces. Manufacturing methods described herein provide for vertical and/or horizontal layers of different materials in a desired configuration or profile.
    Type: Application
    Filed: November 4, 2020
    Publication date: May 13, 2021
    Inventors: Mauro Melli, Mohammadreza Khorasaninejad, Christophe Peroz, Pierre St. Hilaire, Dianmin Lin
  • Publication number: 20210132390
    Abstract: An example a head-mounted display device includes a light projector and an eyepiece. The eyepiece is arranged to receive light from the light projector and direct the light to a user during use of the wearable display system. The eyepiece includes a waveguide having an edge positioned to receive light from the display light source module and couple the light into the waveguide. The waveguide includes a first surface and a second surface opposite the first surface. The waveguide includes several different regions, each having different grating structures configured to diffract light according to different sets of grating vectors.
    Type: Application
    Filed: October 28, 2020
    Publication date: May 6, 2021
    Inventors: Dianmin Lin, Pierre St. Hilaire
  • Publication number: 20210055557
    Abstract: An example head-mounted display device includes a plurality of optical elements in optical communication. The optical elements are configured to project an image in a field of view of a user wearing the head-mounted display device. A first optical element is configured to receive light from a second optical element. The first optical element defines a grating at along a periphery of the first optical element. The grating includes a plurality of protrusions extending from a base portion of the first optical element. The protrusions include a first material having a first optical dispersion profile for visible wavelengths of light. The grating also includes a second material disposed between at least some of the plurality of protrusions along the base portion of the first optical element. The second material has a second optical dispersion profile for visible wavelengths of light.
    Type: Application
    Filed: July 2, 2020
    Publication date: February 25, 2021
    Inventors: Pierre St. Hilaire, Mohammadreza Khorasaninejad, Dianmin Lin
  • Publication number: 20200284967
    Abstract: An eyepiece for projecting an image to an eye of a viewer includes a waveguide configured to propagate light in a first wavelength range, and a grating coupled to a back surface of the waveguide. The grating is configured to diffract a first portion of the light propagating in the waveguide out of a plane of the waveguide toward a first direction, and to diffract a second portion of the light propagating in the waveguide out of the plane of the waveguide toward a second direction opposite to the first direction. The eyepiece furthers include a wavelength-selective reflector coupled to a front surface of the waveguide. The wavelength selective reflector is configured to reflect light in the first wavelength range and transmit light outside the first wavelength range, such that the wavelength-selective reflector reflects at least part of the second portion of the light back toward the first direction.
    Type: Application
    Filed: May 20, 2020
    Publication date: September 10, 2020
    Applicant: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Dianmin Lin, Pierre St. Hilaire
  • Patent number: 10725223
    Abstract: An eyepiece for projecting an image to an eye of a viewer includes a waveguide configured to propagate light in a first wavelength range, and a grating coupled to a back surface of the waveguide. The grating is configured to diffract a first portion of the light propagating in the waveguide out of a plane of the waveguide toward a first direction, and to diffract a second portion of the light propagating in the waveguide out of the plane of the waveguide toward a second direction opposite to the first direction. The eyepiece furthers include a wavelength-selective reflector coupled to a front surface of the waveguide. The wavelength selective reflector is configured to reflect light in the first wavelength range and transmit light outside the first wavelength range, such that the wavelength-selective reflector reflects at least part of the second portion of the light back toward the first direction.
    Type: Grant
    Filed: August 22, 2017
    Date of Patent: July 28, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Brian T. Schowengerdt, Dianmin Lin, Pierre St. Hilaire
  • Publication number: 20200150437
    Abstract: An optical system comprises an optically transmissive substrate comprising a metasurface which comprises a grating comprising a plurality of unit cells. Each unit cell comprises a laterally-elongated first nanobeam having a first width; and a laterally-elongated second nanobeam spaced apart from the first nanobeam by a gap, the second nanobeam having a second width larger than the first width. A pitch of the unit cells is 10 nm to 1 ?m. The heights of the first and the second nanobeams are: 10 nm to 450 nm where a refractive index of the substrate is more than 3.3; and 10 nm to 1 ?m where the refractive index is 3.3 or less.
    Type: Application
    Filed: January 2, 2020
    Publication date: May 14, 2020
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Publication number: 20200142110
    Abstract: Metasurfaces provide compact optical elements in head-mounted display systems to, e.g., incouple light into or outcouple light out of a waveguide. The metasurfaces may be formed by a plurality of repeating unit cells, each unit cell comprising two sets or more of nanobeams elongated in crossing directions: one or more first nanobeams elongated in a first direction and a plurality of second nanobeams elongated in a second direction. As seen in a top-down view, the first direction may be along a y-axis, and the second direction may be along an x-axis. The unit cells may have a periodicity in the range of 10 nm to 1 ?m, including 10 nm to 500 nm or 300 nm to 500 nm. Advantageously, the metasurfaces provide diffraction of light with high diffraction angles and high diffraction efficiencies over a broad range of incident angles and for incident light with circular polarization.
    Type: Application
    Filed: November 4, 2019
    Publication date: May 7, 2020
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov
  • Patent number: 10591643
    Abstract: Embodiments of 3D imaging systems that use a multifunctional, nano structured metalens to replace the conventional microlens array in light field imaging are disclosed. The optical focusing properties of the metalenses provided by gradient metasurface optical elements. The gradient metasurfaces allow the properties of the elements of the metalens array to be changed by tuning the gradient metasurfaces.
    Type: Grant
    Filed: November 21, 2016
    Date of Patent: March 17, 2020
    Assignee: The Board of Trustees of the Leland Stanford Junior University
    Inventors: Dianmin Lin, Mark L. Brongersma, Pieter G. Kik, Gordon Wetzstein
  • Patent number: 10527851
    Abstract: An optical system comprises an optically transmissive substrate comprising a metasurface which comprises a grating comprising a plurality of unit cells. Each unit cell comprises a laterally-elongated first nanobeam having a first width; and a laterally-elongated second nanobeam spaced apart from the first nanobeam by a gap, the second nanobeam having a second width larger than the first width. A pitch of the unit cells is 10 nm to 1 ?m. The heights of the first and the second nanobeams are: 10 nm to 450 nm where a refractive index of the substrate is more than 3.3; and 10 nm to 1 ?m where the refractive index is 3.3 or less.
    Type: Grant
    Filed: May 5, 2017
    Date of Patent: January 7, 2020
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Mauro Melli, Pierre St. Hilaire, Christophe Peroz, Evgeni Poliakov
  • Patent number: 10466394
    Abstract: Metasurfaces provide compact optical elements in head-mounted display systems to, e.g., incouple light into or outcouple light out of a waveguide. The metasurfaces may be formed by a plurality of repeating unit cells, each unit cell comprising two sets or more of nanobeams elongated in crossing directions: one or more first nanobeams elongated in a first direction and a plurality of second nanobeams elongated in a second direction. As seen in a top-down view, the first direction may be along a y-axis, and the second direction may be along an x-axis. The unit cells may have a periodicity in the range of 10 nm to 1 ?m, including 10 nm to 500 nm or 300 nm to 500 nm. Advantageously, the metasurfaces provide diffraction of light with high diffraction angles and high diffraction efficiencies over a broad range of incident angles and for incident light with circular polarization.
    Type: Grant
    Filed: January 25, 2018
    Date of Patent: November 5, 2019
    Assignee: Magic Leap, Inc.
    Inventors: Dianmin Lin, Michael Anthony Klug, Pierre St. Hilaire, Mauro Melli, Christophe Peroz, Evgeni Poliakov