Patents by Inventor Dianqing Li

Dianqing Li has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20220234036
    Abstract: Cuy/MMgOx interfacial catalyst for selective alkyne hydrogenation and its preparation method are disclosed. The preparation method of the catalyst includes: the mixture of salt and alkali solution is nucleated momentarily by nucleation/crystallization isolation method, preparing the composite metal hydroxide CuyMMg4-LDHs as precursor, which has typical hexagonal morphology of the double hydroxide; the precursor is topologically transformed by heat treatment to produce unsaturated oxide; the catalyst with Cuy-MMgOx interface structure is prepared by separating and electronically modifying Cu particles. By adjusting the ratio of Cu2+/M3+ in LDHs, the electronic and geometric structure of Cuy-MMgOx interface can be flexibly controlled, thus enhancing the reaction activity, product selectivity and stability. The catalyst can be used in the selective hydrogenation of various alkynes in the fields of petrochemical and fine chemical industry, with the outstanding catalytic activity and C?C double bond selectivity.
    Type: Application
    Filed: May 31, 2021
    Publication date: July 28, 2022
    Inventors: Yanan Liu, Junting Feng, Fengzhi Fu, Dianqing Li, Yufei He
  • Patent number: 10913052
    Abstract: The purpose of the invention is to provide a supported bimetallic core-shell structure catalyst and its preparation method. Supporter, metal salt and reducing agent solution are mixed to synthesize the catalyst M@PdM/ZT by using a one-step synthesis method, wherein the active metal particle M@PdM as core-shell structure, M Is the core representing one of the Ag, Pt, Au and Ir. ZT is the supporter, representing one of hydrotalcite (Mg2Al-LDH), alumina (Al2O3) and silica (SiO2). By changing the temperature and the reaction time to control the kinetic behavior of the reduction of two kinds of metal ions to realize the construction of core-shell structure. Active metal particle composition and shell thickness are regulated by controlling metal ion concentration. The bimetallic core-shell catalyst prepared by this method showed excellent selectivity and stability in acetylene selective hydrogenation and anthraquinone hydrogenation.
    Type: Grant
    Filed: November 2, 2018
    Date of Patent: February 9, 2021
    Assignee: BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY
    Inventors: Dianqing Li, Rui Ma, Yufei He, Yongjun Feng, Junting Feng
  • Publication number: 20210023536
    Abstract: The purpose of the invention is to provide a supported bimetallic core-shell structure catalyst and its preparation method. Supporter, metal salt and reducing agent solution are mixed to synthesize the catalyst M@PdM/ZT by using a one-step synthesis method, wherein the active metal particle M@PdM as core-shell structure, M Is the core representing one of the Ag, Pt, Au and Ir. ZT is the supporter, representing one of hydrotalcite (Mg2Al-LDH), alumina (Al2O3) and silica (SiO2). By changing the temperature and the reaction time to control the kinetic behavior of the reduction of two kinds of metal ions to realize the construction of core-shell structure. Active metal particle composition and shell thickness are regulated by controlling metal ion concentration. The bimetallic core-shell catalyst prepared by this method showed excellent selectivity and stability in acetylene selective hydrogenation and anthraquinone hydrogenation.
    Type: Application
    Filed: November 2, 2018
    Publication date: January 28, 2021
    Applicant: Beijing University of Chemical Techhnology
    Inventors: Dianqing LI, Rui MA, Yufei HE, Yongjun FENG, Junting FENG
  • Patent number: 9475705
    Abstract: The present invention belongs to the synthesis technology field of inorganic functional materials, and particularly provides a self-balanced high-pressure and high-shear autoclave and its application in the preparation of layered double hydroxides (LDHs). In this invention, by imbedding the handpiece of emulsification mill into the autoclave, and by taking the motor driving system outside of the autoclave, the pressure of the autoclave can be highly stable by the use of self-balanced seal gland. These characters solve the problem that the typical emulsification mill cannot be used in high-pressure system, and ensure the crystallization under the high-pressure and high-shear conditions. Such autoclave takes the advantages of additional equipment, and eliminates the volume effect in the amplification process. By the use of this new autoclave, the reaction time can be shorten from 24 hours to 2-6 hours, the reaction temperature can be reduced from 180° C. to 140° C.
    Type: Grant
    Filed: May 21, 2013
    Date of Patent: October 25, 2016
    Assignees: BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY, JIANGYIN RUIFA CHEMICAL CO., LTD.
    Inventors: Yanjun Lin, Kaitao Li, Bo Ning, Dianqing Li, Xue Duan, Chenfa Wen, Xuchang Tan
  • Publication number: 20160009566
    Abstract: The present invention belongs to the synthesis technology field of inorganic functional materials, and particularly provides a self-balanced high-pressure and high-shear autoclave and its application in the preparation of layered double hydroxides (LDHs). In this invention, by imbedding the handpiece of emulsification mill into the autoclave, and by taking the motor driving system outside of the autoclave, the pressure of the autoclave can be highly stable by the use of self-balanced seal gland. These characters solve the problem that the typical emulsification mill cannot be used in high-pressure system, and ensure the crystallization under the high-pressure and high-shear conditions. Such autoclave takes the advantages of additional equipment, and eliminates the volume effect in the amplification process. By the use of this new autoclave, the reaction time can be shorten from 24 hours to 2-6 hours, the reaction temperature can be reduced from 180° C. to 140° C.
    Type: Application
    Filed: May 21, 2013
    Publication date: January 14, 2016
    Inventors: Yanjun LIN, Kaitao LI, Bo NING, Dianqing LI, Xue DUAN, Chenfa WEN, Xuchang TAN
  • Patent number: 8765632
    Abstract: A process for preparing a catalyst comprising palladium supported on a carrier via a layered precursor, comprising the following steps: (1) synthesis of hydrotalcite layered precursor which comprises promoting metal element and aluminium on the surface of the carrier of A12O3 microspheres, the atoms of the promoting metal and aluminium being highly dispersed by each other and bonded firmly to the carrier due to the crystal lattice positioning effect of the hydrotalcite crystal; (2) introduction of palladium into the carrier through impregnation; (3) drying; and (4) calcination and reduction with H2, the hydrotalcite layered precursor being converted into a composite oxide which consists of oxides of the promoting metal and aluminium, and the promoting metal element and aluminium being highly dispersed by each other and being able to separate and disperse the mainly active palladium element loaded later.
    Type: Grant
    Filed: June 25, 2009
    Date of Patent: July 1, 2014
    Assignee: Beijing University of Chemical Technology
    Inventors: Fazhi Zhang, Peng Chen, Rong Hou, Jiali Chen, Chao Gao, Hui Zhang, Dianqing Li, Feng Li, Xue Duan
  • Patent number: 8652994
    Abstract: A process for preparing supported noble metal catalyst in situ is provided by mixing and crystallizing hexamethylenetetramine, soluble divalent metal salts solution, Al2O3 carriers and soluble noble metal salts solution wherein the hexamethylenetetramine is used as a precipitating agent for preparing hydrotalcite and a reducing agent of noble metal precursor. During the growth process of hydrotalcite, Al3+ on the Al2O3 carrier's surface is directly used as the trivalent metal ions in the laminate structure and the hydrotalcite is obtained on the surface of the Al2O3 carriers by in-situ growth. A supported catalyst Me-LDHs-Al2O3 containing an elementary noble metal is produced wherein the noble metal element particle in the catalyst has a particle size of 10 to 60 nm, and is evenly and stably dispersed on or between slabs of the hydrotalcite.
    Type: Grant
    Filed: May 27, 2010
    Date of Patent: February 18, 2014
    Assignee: Beijing University of Chemical Technology
    Inventors: Dianqing Li, Junting Feng, Xiaoyan Ma
  • Publication number: 20130143731
    Abstract: A supported noble metal catalyst and a process for preparing the same in situ are provided. Hexamethylenetetramine, a soluble divalent metal salt solution, a Al2O3 carrier and a soluble noble metal salt solution, are mixed and crystallized, in which the hexamethylenetetramine acts as both a precipitating agent for producing hydrotalcite and a reducing agent for the noble metal precursor, and a supported catalyst Me-LDHs-Al2O3 containing an elementary substance of a noble metal is prepared by a one-step reaction. During the growth of the hydrotalcite, Al3+ on the surface layer of the Al2O3 carrier is directly used as the trivalent metal ion to form the slab structure of the hydrotalcite, and the hydrotalcite is grown in situ on the surface of the alumina carrier. The noble metal element particle in the catalyst has a particle size of 10 to 60 nm, and has an even and stable dispersion on or between slabs of the hydrotalcite.
    Type: Application
    Filed: May 27, 2010
    Publication date: June 6, 2013
    Applicant: BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY
    Inventors: Dianqing Li, Junting Feng, Xiaoyan Ma
  • Patent number: 8088349
    Abstract: Disclosed is a clean method for preparing layered double hydroxides (LDHs), in which hydroxides of different metals are used as starting materials for production of LDHs by atom-economical reactions. The atom efficiency of the reaction is 100% in each case because all the atoms of the reactants are converted into the target product since only M2+(OH)2, M3+(OH)3, and CO2 or HnAn? are used, without any NaOH or other materials. Since there is no by-product, filtration or washing process is unnecessary. The consequent reduction in water consumption is also beneficial to the environment.
    Type: Grant
    Filed: September 11, 2007
    Date of Patent: January 3, 2012
    Assignee: Beijing University of Chemical Technology
    Inventors: Xue Duan, Dianqing Li, Zhi Lv, Yanjun Lin, Xiangyu Xu
  • Publication number: 20110237430
    Abstract: A process for preparing a catalyst comprising palladium supported on a carrier via a layered precursor, comprising the following steps: (1) synthesis of hydrotalcite layered precursor which comprises promoting metal element and aluminium on the surface of the carrier of Al2O3 microspheres, the atoms of the promoting metal and aluminium being highly dispersed by each other and bonded firmly to the carrier due to the crystal lattice positioning effect of the hydrotalcite crystal; (2) introduction of palladium into the carrier through impregnation; (3) drying; and (4) calcination and reduction with H2, the hydrotalcite layered precursor being converted into a composite oxide which consists of oxides of the promoting metal and aluminium, and the promoting metal element and aluminium being highly dispersed by each other and being able to separate and disperse the mainly active palladium element loaded later.
    Type: Application
    Filed: June 25, 2009
    Publication date: September 29, 2011
    Applicant: BEIJING UNIVERSITY OF CHEMICAL TECHNOLOGY
    Inventors: Fazhi Zhang, Peng Chen, Rong Hou, Jiali Chen, Chao Gao, Hui Zhang, Dianqing Li, Feng Li, Xue Duan
  • Publication number: 20080170978
    Abstract: Disclosed is a clean method for preparing layered double hydroxides (LDHs), in which hydroxides of different metals are used as starting materials for production of LDHs by atom-economical reactions. The atom efficiency of the reaction is 100% in each case because all the atoms of the reactants are converted into the target product since only M2+(OH)2, M3+(OH)3, and CO2 or HnAn? are used, without any NaOH or other materials. Since there is no by-product, filtration or washing process is unnecessary. The consequent reduction in water consumption is also beneficial to the environment.
    Type: Application
    Filed: September 11, 2007
    Publication date: July 17, 2008
    Applicant: Beijing University of Chemical Technology
    Inventors: Xue Duan, Dianqing Li, Zhi Lv, Yanjun Lin, Xiangyu Xu