Patents by Inventor Didier NIMAL

Didier NIMAL has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9889012
    Abstract: A method for manufacturing a three-dimensional biomedical device for fitting in a bone defect having an osteoinductive first area with a controlled porosity and a second area, which is produced by laser technology from an absorbent and from a first powder including one of ceramics, metals, metal alloys, bioactive glasses, lead zirconate titanate and biocompatible polymers, or mixtures thereof, wherein the ratio of the porosities from the second area to the first area is equal or less than one, preferably from 0.001 to 0.9, wherein a virtual object is designed with a computer-aid designed software, and the device is manufactured by laser technology including layering a powder onto a plate (7) so that a layer of a predetermined thickness is formed; the laser beam (8) selectively processes the powder to produce a processed layer, and, thus, layer after layer, the layers are joined together until the biomedical device is formed.
    Type: Grant
    Filed: September 16, 2014
    Date of Patent: February 13, 2018
    Inventor: Didier Nimal
  • Publication number: 20160052162
    Abstract: A process for manufacturing a three-dimensional article from a pulverulent substrate including at least a main substrate and at least an energy transferring vector, the process using at least one high energy source of a determined wavelength for melting the pulverulent substrate. The three-dimensional article manufactured from the process and the layer manufacturing system are also described.
    Type: Application
    Filed: March 28, 2014
    Publication date: February 25, 2016
    Inventors: Christophe COLIN, Jean-Dominique BARTOUT, Emmanuelle SHAKER, David MARCHAT, Didier NIMAL
  • Publication number: 20150004042
    Abstract: A method for manufacturing a three-dimensional biomedical device for fitting in a bone defect having an osteoinductive first area with a controlled porosity and a second area, which is produced by laser technology from an absorbent and from a first powder including one of ceramics, metals, metal alloys, bioactive glasses, lead zirconate titanate and biocompatible polymers, or mixtures thereof, wherein the ratio of the porosities from the second area to the first area is equal or less than one, preferably from 0.001 to 0.9, wherein a virtual object is designed with a computer-aid designed software, and the device is manufactured by laser technology including layering a powder onto a plate (7) so that a layer of a predetermined thickness is formed; the laser beam (8) selectively processes the powder to produce a processed layer, and, thus, layer after layer, the layers are joined together until the biomedical device is formed.
    Type: Application
    Filed: September 16, 2014
    Publication date: January 1, 2015
    Inventor: Didier NIMAL
  • Publication number: 20140377321
    Abstract: A three-dimensional biomedical device having an osteoinductive first area with a controlled porosity and a second area, which is produced by laser technology from a powder including one of ceramics, metals, metal alloys, bioactive glasses, lead zirconate titanate and biocompatible polymers, or mixtures thereof. The ratio of the porosities from the second area to the first area is equal or less than one, preferably from 0.001 to 0.9. A method for manufacturing the device for fitting in a bone defect, wherein a virtual object is designed with a computer-aid designed software, and the device is manufactured by laser technology including layering a powder onto a plate (7) so that a layer of a predetermined thickness is formed; the laser beam (8) selectively processes the powder to produce a processed layer, and, thus, layer after layer, the layers are joined together until the biomedical device is formed.
    Type: Application
    Filed: September 10, 2014
    Publication date: December 25, 2014
    Inventor: Didier NIMAL
  • Patent number: 8862258
    Abstract: A three-dimensional biomedical device having an osteoinductive first area with a controlled porosity and a second area, which is produced by laser technology from a powder including one of ceramics, metals, metal alloys, bioactive glasses, lead zirconate titanate and biocompatible polymers, or mixtures thereof. The ratio of the porosities from the second area to the first area is equal or less than one, preferably from 0.001 to 0.9. A method for manufacturing the device for fitting in a bone defect, wherein a virtual object is designed with a computer-aid designed software, and the device is manufactured by laser technology including layering a powder onto a plate (7) so that a layer of a predetermined thickness is formed; the laser beam (8) selectively processes the powder to produce a processed layer, and, thus, layer after layer, the layers are joined together until the biomedical device is formed.
    Type: Grant
    Filed: January 23, 2012
    Date of Patent: October 14, 2014
    Inventor: Didier Nimal
  • Publication number: 20120165954
    Abstract: A three-dimensional biomedical device having an osteoinductive first area with a controlled porosity and a second area, which is produced by laser technology from a powder including one of ceramics, metals, metal alloys, bioactive glasses, lead zirconate titanate and biocompatible polymers, or mixtures thereof. The ratio of the porosities from the second area to the first area is equal or less than one, preferably from 0.001 to 0.9. A method for manufacturing the device for fitting in a bone defect, wherein a virtual object is designed with a computer-aid designed software, and the device is manufactured by laser technology including layering a powder onto a plate (7) so that a layer of a predetermined thickness is formed; the laser beam (8) selectively processes the powder to produce a processed layer, and, thus, layer after layer, the layers are joined together until the biomedical device is formed.
    Type: Application
    Filed: January 23, 2012
    Publication date: June 28, 2012
    Inventor: Didier NIMAL