Patents by Inventor Diego R. Yankelevich

Diego R. Yankelevich has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20230024540
    Abstract: The disclosed embodiments relate to multimodal imaging system comprising a fiber-coupled fluorescence imaging system, which operates based on ultra-violet (UV) excitation light, and a fiber-coupled optical coherence tomography (OCT) imaging system. The multimodal imaging system also includes a fiber optic interface comprising a single optical fiber, which facilitates light delivery to a sample-of-interest and collection of returned optical signals for both the fluorescence imaging system and the OCT imaging system. During operation of the system, the single optical fiber carries both UV light and coherent infrared light through two concentric light-guiding regions, thereby facilitating generation of precisely co-registered optical data from the fluorescence imaging system and the OCT imaging system.
    Type: Application
    Filed: September 22, 2022
    Publication date: January 26, 2023
    Applicant: The Regents of the University of California
    Inventors: Benjamin E. Sherlock, Diego R. Yankelevich, Julien Bec, Laura Marcu
  • Patent number: 11490818
    Abstract: The disclosed embodiments relate to multimodal imaging system, comprising: a fiber-coupled fluorescence imaging system, which operates based on ultra-violet (UV) excitation light; and a fiber-coupled optical coherence tomography (OCT) imaging system. The multimodal imaging system also includes a fiber optic interface comprising a single optical fiber, which facilitates light delivery to a sample-of-interest and collection of returned optical signals for both the fluorescence imaging system and the OCT imaging system. During operation of the system, the single optical fiber carries both UV light and coherent infrared light through two concentric light-guiding regions, thereby facilitating generation of precisely co-registered optical data from the fluorescence imaging system and the OCT imaging system.
    Type: Grant
    Filed: April 12, 2018
    Date of Patent: November 8, 2022
    Assignee: The Regents of the University of California
    Inventors: Benjamin E. Sherlock, Diego R. Yankelevich, Julien Bec, Laura Marcu
  • Patent number: 11350907
    Abstract: A multimodal intravascular catheter system includes a catheter with an optical channel and an electrical channel. A distal end of the catheter includes an optical element and an ultrasonic transducer, which are oriented orthogonally to a rotational axis of the catheter. A motor drive unit (MDU) is coupled to a proximal end of the catheter and includes a drive motor to rotate the catheter. The optical channel directs light from a pulsed UV laser source to the optical element, and returns an optical fluorescence signal from the optical element. A photodetector converts the returned optical fluorescence signal into an electrical fluorescence signal. An intravascular ultrasound (IVUS) processor is coupled to the ultrasonic transducer through the electrical channel, wherein the IVUS processor generates a drive signal for the ultrasound transducer, and processes echo information returned from the ultrasound transducer. Finally, a digitizer samples the electrical fluorescence signal and associated echo information.
    Type: Grant
    Filed: November 30, 2017
    Date of Patent: June 7, 2022
    Assignee: The Regents of the University of California
    Inventors: Laura Marcu, Julien Bec, Diego R. Yankelevich
  • Publication number: 20210106233
    Abstract: The disclosed embodiments relate to multimodal imaging system, comprising: a fiber-coupled fluorescence imaging system, which operates based on ultra-violet (UV) excitation light; and a fiber-coupled optical coherence tomography (OCT) imaging system. The multimodal imaging system also includes a fiber optic interface comprising a single optical fiber, which facilitates light delivery to a sample-of-interest and collection of returned optical signals for both the fluorescence imaging system and the OCT imaging system. During operation of the system, the single optical fiber carries both UV light and coherent infrared light through two concentric light-guiding regions, thereby facilitating generation of precisely co-registered optical data from the fluorescence imaging system and the OCT imaging system.
    Type: Application
    Filed: April 12, 2018
    Publication date: April 15, 2021
    Applicant: The Regents of the University of California
    Inventors: Benjamin E. Sherlock, Diego R. Yankelevich, Julien Bec, Laura Marcu
  • Publication number: 20190374195
    Abstract: A multimodal intravascular catheter system includes a catheter with an optical channel and an electrical channel. A distal end of the catheter includes an optical element and an ultrasonic transducer, which are oriented orthogonally to a rotational axis of the catheter. A motor drive unit (MDU) is coupled to a proximal end of the catheter and includes a drive motor to rotate the catheter. The optical channel directs light from a pulsed UV laser source to the optical element, and returns an optical fluorescence signal from the optical element. A photodetector converts the returned optical fluorescence signal into an electrical fluorescence signal. An intravascular ultrasound (IVUS) processor is coupled to the ultrasonic transducer through the electrical channel, wherein the IVUS processor generates a drive signal for the ultrasound transducer, and processes echo information returned from the ultrasound transducer. Finally, a digitizer samples the electrical fluorescence signal and associated echo information.
    Type: Application
    Filed: November 30, 2017
    Publication date: December 12, 2019
    Applicant: The Regents of the University of California
    Inventors: Laura Marcu, Julien Bec, Diego R. Yankelevich
  • Patent number: 10422749
    Abstract: The disclosed embodiments relate to a system that displays an image of the characteristics of the biological tissue. During operation, the system enables a user to illuminate a measurement location in an area of interest on the biological tissue by manipulating a point measurement probe, wherein the point measurement probe delivers both an excitation beam and an overlapping aiming beam that is visible to a camera. Next, the system obtains fluorescence information from a fluorescence signal emitted from the measurement location in response to the excitation beam. The system then captures an image of the area of interest using the camera and identifies a portion of the image that corresponds to the measurement location by identifying a location illuminated by the aiming beam. Finally, the system generates an overlay image by overlaying the fluorescence information onto the portion of the image that corresponds to the measurement location, and then displays the overlay image to a user.
    Type: Grant
    Filed: January 22, 2016
    Date of Patent: September 24, 2019
    Assignee: The Regents of the University of California
    Inventors: Laura Marcu, Dinglong Ma, Julien Bec, Dimitris Gorpas, Diego R. Yankelevich
  • Publication number: 20170370843
    Abstract: The disclosed embodiments relate to a system that displays an image of the characteristics of the biological tissue. During operation, the system enables a user to illuminate a measurement location in an area of interest on the biological tissue by manipulating a point measurement probe, wherein the point measurement probe delivers both an excitation beam and an overlapping aiming beam that is visible to a camera. Next, the system obtains fluorescence information from a fluorescence signal emitted from the measurement location in response to the excitation beam. The system then captures an image of the area of interest using the camera and identifies a portion of the image that corresponds to the measurement location by identifying a location illuminated by the aiming beam. Finally, the system generates an overlay image by overlaying the fluorescence information onto the portion of the image that corresponds to the measurement location, and then displays the overlay image to a user.
    Type: Application
    Filed: January 22, 2016
    Publication date: December 28, 2017
    Applicant: The Regents of the University of California
    Inventors: Laura Marcu, Dinglong Ma, Julien Bec, Dimitris Gorpas, Diego R. Yankelevich