Patents by Inventor Dieter Goedeke

Dieter Goedeke has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20140179507
    Abstract: A crystallizing glass solder for high-temperature applications, which is free of PbO and contains, in % by weight on an oxide basis: 45% to 60% of BaO; 25% to 40% of SiO2; 5% to 15% of B2O3; 0 to <2% of Al2O3; 2 to 7.0, preferably 4.4 to 7.0%, of MgO; and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 2% to 15%. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Application
    Filed: December 26, 2013
    Publication date: June 26, 2014
    Applicant: SCHOTT AG
    Inventors: DIETER GOEDEKE, PETER BRIX, OLAF CLAUSSEN, JOERN BESINGER, BASTIAN SCHOEN
  • Patent number: 8664134
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Grant
    Filed: September 21, 2011
    Date of Patent: March 4, 2014
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Patent number: 8658549
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Grant
    Filed: March 30, 2010
    Date of Patent: February 25, 2014
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Publication number: 20130337316
    Abstract: A feed-through, in particular a feed-through which passes through part of a housing, in particular a battery housing, for example made of metal, in particular light metal, for example aluminum, an aluminum alloy, AlSiC, magnesium, an magnesium alloy, titanium, a titanium alloy, steel, stainless steel or high-grade steel. The housing part has at least one opening through which at least one conductor, in particular an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body is, for example, an essentially annular-shaped base body.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 19, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330599
    Abstract: A feed-through, for example a battery feed-through for a lithium-ion battery or a lithium ion accumulator, has at least one base body which has at least one opening through which at least one conductor, for example a pin-shaped conductor, embedded in a glass material is guided. The base body contains a low melting material, for example a light metal, such as aluminum, magnesium, AlSiC, an aluminum alloy, a magnesium alloy, titanium, titanium alloy or steel, in particular special steel, stainless steel or tool steel. The glass material consists of the following in mole percent: 35-50% P2O5, for example 39-48%; 0-14% Al2O3, for example 2-12%; 2-10% B2O3, for example 4-8%; 0-30% Na2O, for example 0-20%; 0-20% Li2O, for example 12-20%, wherein M is K, Cs or Rb; 0-10% PbO, for example 0-9%; 0-45% Li2O, for example 0-40% or 17-40%; 0-20% BaO, for example 5-20%; 0-10% Bi2O3, for example 1-5% or 2-5%.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330605
    Abstract: A feed-through component for a conductor feed-through which passes through a part of a housing, for example a battery housing, is embedded in a glass or glass ceramic material and has at least one conductor, for example an essentially pin-shaped conductor, and a head part. The surface, in particular the cross-sectional surface, of the head part is greater than the surface, in particular the cross-sectional surface, of the conductor, for example of the essentially pin-shaped conductor. The head part is embodied such that is can be joined to an electrode-connecting component, for example an electrode-connecting part, which may be made of copper, a copper alloy CuSiC, an aluminum alloy AlSiC or aluminum, with a mechanically stable and non-detachable connection.
    Type: Application
    Filed: August 16, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330604
    Abstract: A feed-through, in particular a feed-through which passes through a housing component of a housing, for example a battery housing, such as a battery cell housing. The housing component includes at least one opening through which at least one conductor, for example an essentially pin-shaped conductor, is guided. The pin-shaped conductor is at least partially surrounded by an insulator, for example made of a glass or a glass ceramic material. The at least one conductor connection, for example of the essentially pin-shaped conductor and/or of the housing component with the insulator, which is a glass or a glass ceramic material, is formed, the connection being an ultrasonic welding.
    Type: Application
    Filed: August 14, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130330600
    Abstract: A glass, for example a glass solder, includes the following components in mole percent (mol-%): P2O5 37-50 mol-%, for example 39-48 mol-%; Al2O3 0-14 mol-%, for example 2-12 mol-%; B2O3 2-10 mol-%, for example 4-8 mol-%; Na2O 0-30 mol-%, for example 0-20 mol-%; M2O 0-20 mol-%, for example 12-20 mol-%, wherein M is, for example, K, Cs or Rb; Li2O 0-42 mol-%, for example 0-40 mol-% or 17-40 mol-%; BaO 0-20 mol-%, for example 0-20 mol-% or 5-20 mol-%; and Bi2O3 0-10 mol-%, for example 1-5 mol-% or 2-5 mol-%.
    Type: Application
    Filed: August 15, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Dieter Goedeke, Linda Johanna Backnaes
  • Publication number: 20130330603
    Abstract: A feed-through has a base body, for example in the form of a disk-shaped metal part. The base body includes at least one opening through which at least one conductor, for example an essentially pin-shaped conductor, embedded in a glass or glass ceramic material, is guided. The base body includes a material having a low melting point, such as a light metal, and the glass or glass ceramic material is selected in such a manner that the melting temperature thereof is lower than the melting temperature of the material of the base body.
    Type: Application
    Filed: August 13, 2013
    Publication date: December 12, 2013
    Applicant: Schott AG
    Inventors: Frank Kroll, Helmut Hartl, Andreas Roters, Hauke Esemann, Dieter Goedeke, Ulf Dahlmann, Sabine Pichler-Wilhelm, Martin Landendinger, Linda Johanna Backnaes
  • Publication number: 20130316218
    Abstract: A glass-based material is disclosed, which is suitable for the production of a separator for an electrochemical energy accumulator, in particular for a lithium ion accumulator, wherein the glass-based material comprises at least the following constituents (in wt.-% based on oxide): SiO2+F+P2O5 20-95; Al2O3 0.5-30, wherein the density is less than 3.7 g/cm3.
    Type: Application
    Filed: September 29, 2011
    Publication date: November 28, 2013
    Applicant: Schott AG
    Inventors: Ulf Dahlmann, Andreas Roters, Dieter Goedeke, Frank-Thomas Lentes, Joern Besinger, Olaf Claussen, Christian Kunert, Ulrich Peuchert, Wolfgang Schmidbauer, Wolfram Beier, Sabine Pichler-Wilhelm
  • Publication number: 20130294818
    Abstract: The glass-ceramic joining material, which is suitable for bonding or joining at low processing temperatures, especially less than 800° C., is composed of a BaO—SiO2—CaO—B2O3—Al2O3 system and has a coefficient of thermal expansion ?(20-300)?9.5·10?6 K?1.
    Type: Application
    Filed: April 22, 2013
    Publication date: November 7, 2013
    Applicant: SCHOTT AG
    Inventor: Dieter Goedeke
  • Publication number: 20130272774
    Abstract: A vitreous or glass-ceramic jointing material, which has a coefficient of thermal expansion ?(20-750) of ?7·10?6 K?1 and is free of BaO and SrO except for at the most impurities and is suitable for producing joint connections between chromium-containing alloys or chromium-containing steels.
    Type: Application
    Filed: March 27, 2013
    Publication date: October 17, 2013
    Applicant: SCHOTT AG
    Inventors: Dieter Goedeke, Jens Suffner
  • Publication number: 20120065049
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Application
    Filed: September 21, 2011
    Publication date: March 15, 2012
    Inventors: Dieter GOEDEKE, Peter BRIX, Olaf CLAUSSEN, Joern BESINGER, Bastian SCHOEN
  • Publication number: 20120057337
    Abstract: The invention relates to a conversion material, in particular for a white or colored light source comprising a semiconductor light source as primary light source, comprising a matrix glass that, as bulk material, for a thickness d of about 1 mm, has a pure transmission ?i of greater than 80% in the wavelength region from 350 to 800 nm and in the region in which the primary light source emits light, wherein the sum of transmission and reflection of the sintered matrix glass without luminophore is at least greater than 80% in the spectral region from 350 nm to 800 nm and in the spectral region in which the primary light source emits light.
    Type: Application
    Filed: April 29, 2009
    Publication date: March 8, 2012
    Inventors: Rainer Liebald, Claudia Stolz, Peter Brix, Simone Monika Ritter, Peter Nass, Dieter Goedeke, Sabine Pichler-Wilhelm, Sabrina Wimmer
  • Publication number: 20110312482
    Abstract: A crystallizing glass solder for high-temperature applications, containing, in % by weight on an oxide basis: 45% to 60% of BaO, 25% to 40% of SiO2, 5% to 15% of B2O3, 0 to <2% of Al2O3, and at least one alkaline earth metal oxide from the group consisting of MgO, CaO and SrO, wherein CaO is 0% to 5% and the sum of the alkaline earth metal oxides MgO, CaO and SrO is 0% to 20%, preferably 2% to 15%. The glass solder is preferably free from TeO2 and PbO. Preferred embodiments of the glass solder contain from 3 to 15 wt. % of Y2O3 and have low porosity and high stability with respect to a moist fuel gas environment.
    Type: Application
    Filed: March 30, 2010
    Publication date: December 22, 2011
    Inventors: Dieter Goedeke, Peter Brix, Olaf Claussen, Joern Besinger, Bastian Schoen
  • Patent number: 7910506
    Abstract: The glass composite has a linear thermal expansion coefficient ?(20-300) of 1.8×10?6K?1 to 2.4×10?6K?1, a glass transformation temperature Tg of less than 650° C., and a composition, in weight percent based on oxide content, of: 5-9, B2O3; 1-3, Na2O; 15-22, Al2O3; 61-68, SiO2; 0.2-0.5, K2O; and 5.5-8.5, MgO. It can be made by sintering a mixture of 40 to 60 wt. % of a borosilicate glass powder and 60 to 40 wt. % of a cordierite powder. The powder mixture can be used to make a glass solder for joining parts, to make a sintered body with thermal shock resistance, or for glazing or soldering PZT ceramics.
    Type: Grant
    Filed: July 2, 2008
    Date of Patent: March 22, 2011
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Susanne Schmid
  • Publication number: 20100240514
    Abstract: The invention relates to granulates, a process for the production thereof, in particular a process for the continuous production of these granulates, and use of the granulates for the manufacture of green compacts or compacts and further processing thereof into corresponding products, whereby the granulates have spherical particles with a smooth or smoothed, in particular fire-polished, surface.
    Type: Application
    Filed: January 21, 2010
    Publication date: September 23, 2010
    Inventors: Ewald Mittermeier, Dieter Goedeke, Peter Elfner, Sabine Pichler-Wilhelm
  • Patent number: 7799712
    Abstract: The low melting solder glass contains, in wt. % on an oxide basis, >1-2, SiO2; 5-10, B2O3; 4.5-12, ZnO; 79-88, Bi2O3; 0.0, CeO2; and 0.6-2, Al2O3, and a weight ratio of SiO2 to Al2O3 of <2. The solder glass preferably contains from 80.5 to 85 wt. % of Bi2O3 and is free of lead. This solder glass has a linear thermal expansion coefficient ?(20-300) of <11.5×10?6/K and a transformation temperature Tg of <380° C. A solder glass preparation for connecting or sealing a glass part with a metal part contains the low melting solder glass and up to 20 wt. % of ?-eucryptite, cordierite, mullite, willemite or zircon.
    Type: Grant
    Filed: May 29, 2008
    Date of Patent: September 21, 2010
    Assignee: Schott AG
    Inventors: Dieter Goedeke, Peter Brix
  • Publication number: 20090011917
    Abstract: The glass composite has a linear thermal expansion coefficient ?(20-300) of 1.8×10?6K?1 to 2.4×10?6K?1, a glass transformation temperature Tg of less than 650° C., and a composition, in weight percent based on oxide content, of: 5-9, B2O3; 1-3, Na2O; 15-22, Al2O3; 61-68, SiO2; 0.2-0.5, K2O; and 5.5-8.5, MgO. It can be made by sintering a mixture of 40 to 60 wt. % of a borosilicate glass powder and 60 to 40 wt. % of a cordierite powder. The powder mixture can be used to make a glass solder for joining parts, to make a sintered body with thermal shock resistance, or for glazing or soldering PZT ceramics.
    Type: Application
    Filed: July 2, 2008
    Publication date: January 8, 2009
    Inventors: Dieter Goedeke, Susanne Schmid
  • Publication number: 20080300126
    Abstract: The low melting solder glass contains, in wt. % on an oxide basis, >1-2, SiO2; 5-10, B2O3; 4.5-12, ZnO; 79-88, Bi2O3; and 0.6-2, Al2O3, and a weight ratio of SiO2 to Al2O3 of <2. The solder glass preferably contains from 80.5 to 85 wt. % of Bi2O3 and is free of lead. This solder glass has a linear thermal expansion coefficient ?(20-300) of <11.5×10?6/K and a transformation temperature Tg of <380° C. A solder glass preparation for connecting or sealing a glass part with a metal part contains the low melting solder glass and up to 20 wt. % of ?-eukryptite, cordierite, mullite, willemite or zircon.
    Type: Application
    Filed: May 29, 2008
    Publication date: December 4, 2008
    Inventors: Dieter Goedeke, Peter Brix