Patents by Inventor Dieter K. Weller

Dieter K. Weller has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20130270221
    Abstract: A method for making a bit-patterned-media magnetic recording disk with discrete magnetic islands includes annealing the data islands after they have been formed by an etching process. A hard mask, such as a layer of silicon nitride or carbon, may be first formed on the recording layer and a patterned resist formed on the hard mask. The resist pattern is then transferred into the hard mask, which is used as the etch mask to etch the recording layer and form the discrete data islands. After the data islands are formed by the etching process, the patterned recording layer is annealed. The annealing may be done in a vacuum, or in an inert gas, like helium or argon, or in a forming gas such as a reducing atmosphere of argon plus hydrogen. The annealing improves the coercivity, the effective saturation magnetization and the thermal stability of the patterned media.
    Type: Application
    Filed: April 17, 2012
    Publication date: October 17, 2013
    Inventors: Michael Konrad Grobis, Olav Hellwig, Ernesto E. Marinero, Andrew Thomas McCallum, Dieter K. Weller
  • Patent number: 8541116
    Abstract: A patterned perpendicular magnetic recording disk with discrete data islands of recording layer (RL) material includes a substrate, a patterned exchange bridge layer of magnetic material between the substrate and the islands, and an optional exchange-coupling control layer (CCL) between the exchange bridge layer and the islands. The exchange bridge layer has patterned pedestals below the islands. The exchange bridge layer controls exchange interactions between the RLs in adjacent islands to compensate the dipolar fields between islands, and the pedestals concentrate the flux from the write head. The disk may include a soft underlayer (SUL) of soft magnetically permeable material on the substrate and a nonmagnetic exchange break layer (EBL) on the SUL between the SUL and the exchange bridge layer. In a thermally-assisted recording (TAR) disk a heat sink layer may be located below the exchange bridge layer and the SUL may be optional.
    Type: Grant
    Filed: October 18, 2010
    Date of Patent: September 24, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Dan Saylor Kercher, Ernesto E. Marinero, Manfred Ernst Schabes, Dieter K. Weller, Gabriel Zeltzer
  • Patent number: 8492010
    Abstract: A silicon/gold (Si/Au) bilayer seed structure is located in a film stack between an amorphous or crystalline lower layer and an upper layer with a well-defined crystalline structure. The seed structure includes a Si layer on the generally flat surface of the lower layer and a Au layer on the Si layer. The Si/Au interface initiates the growth of the Au layer with a face-centered-cubic (fcc) crystalline structure with the (111) plane oriented in-plane. The upper layer grown on the Au layer has a fcc or hexagonal-close-packed (hcp) crystalline structure. If the upper layer is a fcc material its [111] direction is oriented substantially perpendicular to the (111) plane of the Au layer and if the upper layer is a hcp material, its c-axis is oriented substantially perpendicular to the (111) plane of the Au layer.
    Type: Grant
    Filed: May 1, 2010
    Date of Patent: July 23, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Dieter K. Weller
  • Publication number: 20130170075
    Abstract: A magnetic media has a substrate with an underlayer and a seed layer on the underlayer. The seed layer has a non-continuous metallic layer with a cubed crystalline lattice that is 001 textured, and has a lattice mismatch within 15% of a crystalline lattice structure of FePt with a metallic additive. This structure defines nucleation sites with an established epitaxial interface.
    Type: Application
    Filed: December 28, 2011
    Publication date: July 4, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Qing Dai, Oleksandr Mosendz, Simone Pisana, Dieter K. Weller
  • Patent number: 8460565
    Abstract: A method of fabricating a patterned magnetic recording medium, comprises steps of: (a) providing a layer stack including an uppermost non-magnetic interlayer; (b) forming a resist layer on the interlayer; (c) forming a first pattern comprising a first group of recesses extending through the resist layer and exposing a first group of spaced apart surface portions of the interlayer; (d) filling the first group of recesses with a layer of a hard mask material; (e) selectively removing the resist layer to form a second pattern comprising a second group of recesses extending through the hard mask layer and exposing a second group of spaced apart surface portions of the interlayer; and (f) filling the second group of recesses with a layer of a magnetically hard material forming a magnetic recording layer.
    Type: Grant
    Filed: April 27, 2010
    Date of Patent: June 11, 2013
    Assignee: Seagate Technology LLC
    Inventors: Kim Y Lee, Hong Ying Wang, Nobuo Kurataka, Christopher Formato, David S Kuo, Dieter K Weller
  • Publication number: 20130114165
    Abstract: A magnetic media for magnetic data recording having a plurality of magnetic grains protected by thin layers of graphitic carbon. The layers of graphitic carbon are formed in a manner similar to onion skins on an onion and can be constructed as single monatomic layers of carbon. The thin layers of graphitic carbon can be formed as layers of graphene or as fullerenes that either cover or partially encapsulate the magnetic gains. The layers of graphitic carbon provide excellent protection against corrosion and wear and greatly reduce magnetic spacing for improved magnetic performance.
    Type: Application
    Filed: November 7, 2011
    Publication date: May 9, 2013
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Oleksandr Mosendz, Simone Pisana, Franck D. R. dit Rose, Dieter K. Weller
  • Publication number: 20130084387
    Abstract: A method for making a bit-patterned-media (BPM) magnetic recording disk includes depositing a FePt (or CoPt) alloy recording layer, and then depositing a sealing layer on the FePt layer before high-temperature annealing. The high-temperature annealing causes the FePt to become substantially chemically-ordered in the L10 phase. After annealing, the sealing layer is removed. The sealing layer prevents nanoclustering and agglomeration of the FePt material at the surface of the FePt layer and the sealing layer, which would result in undesirable high surface roughness of the FePt, making patterning of the FePt layer difficult. The FePt layer can be patterned into the discrete islands for the BPM disk either before deposition of the sealing layer or after deposition and removal of the sealing layer. After patterning and removal of the sealing layer, the disk protective overcoat is deposited over the discrete data islands.
    Type: Application
    Filed: September 29, 2011
    Publication date: April 4, 2013
    Inventors: Olav Hellwig, Jeffrey S. Lille, Andrew Thomas McCallum, Oleksandr Mosendz, Dieter K. Weller
  • Patent number: 8399051
    Abstract: A method for making a bit-patterned-media (BPM) magnetic recording disk includes depositing a FePt (or CoPt) alloy recording layer, and then depositing a sealing layer on the FePt layer before high-temperature annealing. The high-temperature annealing causes the FePt to become substantially chemically-ordered in the L10 phase. After annealing, the sealing layer is removed. The sealing layer prevents nanoclustering and agglomeration of the FePt material at the surface of the FePt layer and the sealing layer, which would result in undesirable high surface roughness of the FePt, making patterning of the FePt layer difficult. The FePt layer can be patterned into the discrete islands for the BPM disk either before deposition of the sealing layer or after deposition and removal of the sealing layer. After patterning and removal of the sealing layer, the disk protective overcoat is deposited over the discrete data islands.
    Type: Grant
    Filed: September 29, 2011
    Date of Patent: March 19, 2013
    Assignee: HGST Netherlands B.V.
    Inventors: Olav Hellwig, Jeffrey S. Lille, Andrew Thomas McCallum, Oleksandr Mosendz, Dieter K. Weller
  • Patent number: 8395984
    Abstract: A method of performing writable optical recording of a medium to form multilevel oriented nano-structures therein, comprises steps of providing a disc-shaped, writable recording medium having a planar surface; and encoding data/information in the medium by forming a plurality of multilevel nano-structured pits in the surface by scanning with a focused spot of optical energy to form at least one data track therein, including scanning the optical spot in a cross-track direction while rotating the disc about a central axis.
    Type: Grant
    Filed: November 2, 2010
    Date of Patent: March 12, 2013
    Inventors: Duane C. Karns, Dieter K. Weller, William A. Challener, Edward Gage, David S. Kuo, Neil Deeman, Shih-Fu Lee, Koichi Wage
  • Publication number: 20120315505
    Abstract: A perpendicular magnetic recording disk has a graded-anisotropy recording layer (RL) formed of at least two ferromagnetically exchange coupled CoPtCr-oxide magnetic layers (MAG1 and MAG2) with two nucleation films (NF1 and NF2) between the magnetic layers. NF1 is a metal film, preferably Ru or a Ru-based alloy like RuCr, sputter deposited on MAG1 at low pressure to a thickness between about 0.1-1.5 nm. NF2 is a metal oxide film, preferably an oxide of Ta, sputter deposited on NF1 at high pressure to a thickness between about 0.2-1.0 nm. MAG2 is sputter deposited over NF2. NF1 and NF2 provide a significant reduction in average grain size in the RL from a graded-anisotropy RL without nucleation films between MAG1 and MAG2, while also assuring that MAG1 and MAG2 are strongly exchange coupled.
    Type: Application
    Filed: June 8, 2011
    Publication date: December 13, 2012
    Inventors: Ernesto E. Marinero, Dieter K. Weller, Brian R. York
  • Patent number: 8320232
    Abstract: A patterned perpendicular magnetic recording medium has discrete data islands that have first and second ferromagnetic layers (MAG1 and MAG2) with first and second nonmagnetic interlayers (IL1 and IL2) between MAG1 and MAG2. MAG1 and MAG2 may be similar CoPtCr alloys with similar thicknesses, with thicknesses of IL1 and IL2 that assure that MAG1 and MAG2 are strongly exchange coupled. Alternatively, MAG2 may be a “write assist” layer, for example a high-saturation magnetization, magnetically soft material in an exchange-spring structure, with IL1 being very thin so that IL2 functions as the coupling layer between MAG1 and the write-assist MAG2 layer. In an application for thermally-assisted recording (TAR), MAG2 may be the chemically-ordered equiatomic binary alloy FePt or CoPt based on the L10 phase, with high magneto-crystalline anisotropy (Ku).
    Type: Grant
    Filed: July 21, 2011
    Date of Patent: November 27, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Ernesto E. Marinero, Dieter K. Weller, Brian R. York
  • Publication number: 20120236694
    Abstract: A patterned perpendicular magnetic recording disk has a Co-alloy recording layer patterned into discrete data islands arranged in concentric tracks and exhibits a narrow switching field distribution (SFD). The disk includes a substrate, a NiTa alloy planarizing layer on the substrate, a nonmagnetic Ru-containing underlayer on the planarizing layer, an oxide-free Co alloy magnetic recording layer, and an ultrathin oxide film between the Ru-containing layer and the Co-alloy magnetic recording layer. The oxide film may be an oxide selected from a Ta-oxide, a Co-oxide and a Ti-oxide, and is ultrathin so that it may be considered a discontinuous film. The planarizing layer and ultrathin oxide film improve the growth homogeneity of the Co-alloy recording layer, so that the patterned disk with data islands shows significantly reduced SFD.
    Type: Application
    Filed: March 16, 2011
    Publication date: September 20, 2012
    Inventors: Olav Hellwig, Ernesto E. Marinero, Dieter K. Weller
  • Patent number: 8268461
    Abstract: A patterned perpendicular magnetic recording disk has a Co-alloy recording layer patterned into discrete data islands arranged in concentric tracks and exhibits a narrow switching field distribution (SFD). The disk includes a substrate, a NiTa alloy planarizing layer on the substrate, a nonmagnetic Ru-containing underlayer on the planarizing layer, an oxide-free Co alloy magnetic recording layer, and an ultrathin oxide film between the Ru-containing layer and the Co-alloy magnetic recording layer. The oxide film may be an oxide selected from a Ta-oxide, a Co-oxide and a Ti-oxide, and is ultrathin so that it may be considered a discontinuous film. The planarizing layer and ultrathin oxide film improve the growth homogeneity of the Co-alloy recording layer, so that the patterned disk with data islands shows significantly reduced SFD.
    Type: Grant
    Filed: March 16, 2011
    Date of Patent: September 18, 2012
    Assignee: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Olav Hellwig, Ernesto E. Marinero, Dieter K. Weller
  • Publication number: 20120147718
    Abstract: A bit-patterned media (BPM) magnetic recording disk has discrete data islands with an exchange-coupled composite (ECC) recording layer (RL) formed of a high-anisotropy chemically-ordered FePt alloy lower layer, a lower-anisotropy Co/X laminate or multilayer (ML) upper layer with perpendicular magnetic anisotropy, wherein X is Pt, Pd or Ni, and an optional nonmagnetic separation layer or coupling layer (CL) between the FePt layer and the ML. The FePt alloy layer is sputter deposited onto a seed layer structure, like a CrRu/Pt bilayer, while the disk substrate is maintained at an elevated temperature to assure the high anisotropy field Hk is achieved. The high-temperature deposition together with the CrRu/Pt seed layer structure provide a very smooth surface for subsequent deposition of the ML (and optional CL). The separate Co/X ML has by itself a very narrow switching field distribution (SFD), so that the SFD of the ECC RL is much narrower than the SFD for the FePt layer alone.
    Type: Application
    Filed: December 9, 2010
    Publication date: June 14, 2012
    Inventors: Olav Hellwig, Andrew Thomas McCallum, Dieter K. Weller
  • Publication number: 20120092790
    Abstract: A patterned perpendicular magnetic recording disk with discrete data islands of recording layer (RL) material includes a substrate, a patterned exchange bridge layer of magnetic material between the substrate and the islands, and an optional exchange-coupling control layer (CCL) between the exchange bridge layer and the islands. The exchange bridge layer has patterned pedestals below the islands. The exchange bridge layer controls exchange interactions between the RLs in adjacent islands to compensate the dipolar fields between islands, and the pedestals concentrate the flux from the write head. The disk may include a soft underlayer (SUL) of soft magnetically permeable material on the substrate and a nonmagnetic exchange break layer (EBL) on the SUL between the SUL and the exchange bridge layer. In a thermally-assisted recording (TAR) disk a heat sink layer may be located below the exchange bridge layer and the SUL may be optional.
    Type: Application
    Filed: October 18, 2010
    Publication date: April 19, 2012
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Olav Hellwig, Dan Saylor Kercher, Ernesto E. Marinero, Manfred Ernst Schabes, Dieter K. Weller, Gabriel Zeltzer
  • Publication number: 20120075747
    Abstract: A hard disk drive has a magnetic media disk comprising a substrate having an axis, and an exchange coupled, bit patterned media on the substrate arranged in a plurality of tracks. Each of the tracks has a pattern of islands extending in an axial direction from the disk. Each island comprises a first layer having a first anisotropy and a first layer radial width, and a second layer on the first layer and having a second anisotropy that is lower than the first anisotropy. The second layer radial width is less than the first layer radial width.
    Type: Application
    Filed: September 28, 2010
    Publication date: March 29, 2012
    Applicant: Hitachi Global Storage Technologies Netherlands B.V.
    Inventors: Elizabeth A. Dobisz, Michael K. Grobis, Olav Hellwig, Dieter K. Weller
  • Patent number: 8081542
    Abstract: A thermally-assisted recording (TAR) patterned-media magnetic recording disk drive has a perpendicular patterned-media disk with multilevel data islands and a laser capable of supplying multiple levels of output power to a near-field transducer (NFT). If there are only two cells in each island, each island is formed of an upper cell of magnetic material with a coercivity HC1 and a Curie temperature TC1, a lower cell of magnetic material with a coercivity HC2 and a Curie temperature TC2 greater than TC1, and a nonmagnetic spacer layer between the two cells. Each cell is formed of high-anisotropy material so as to have an anisotropy field greater than the magnetic write field. The TAR laser is capable of supplying at least two levels of output power to the NFT to allow the islands to be heated to two distinct temperatures so that the two cells in an island can be written so as to have either the same or opposite magnetizations.
    Type: Grant
    Filed: November 9, 2010
    Date of Patent: December 20, 2011
    Assignee: Hitachi Global Technologies Netherlands B.V.
    Inventors: Michael Konrad Grobis, Barry Cushing Stipe, Dieter K. Weller, Gabriel Zeltzer
  • Publication number: 20110268993
    Abstract: A silicon/gold (Si/Au) bilayer seed structure is located in a film stack between an amorphous or crystalline lower layer and an upper layer with a well-defined crystalline structure. The seed structure includes a Si layer on the generally flat surface of the lower layer and a Au layer on the Si layer. The Si/Au interface initiates the growth of the Au layer with a face-centered-cubic (fcc) crystalline structure with the (111) plane oriented in-plane. The upper layer grown on the Au layer has a fcc or hexagonal-close-packed (hcp) crystalline structure. If the upper layer is a fcc material its [111] direction is oriented substantially perpendicular to the (111) plane of the Au layer and if the upper layer is a hcp material, its c-axis is oriented substantially perpendicular to the (111) plane of the Au layer.
    Type: Application
    Filed: May 1, 2010
    Publication date: November 3, 2011
    Applicant: HITACHI GLOBAL STORAGE TECHNOLOGIES NETHERLANDS B.V.
    Inventors: Olav Hellwig, Dieter K. Weller
  • Publication number: 20110044147
    Abstract: A method of performing writable optical recording of a medium to form multilevel oriented nano-structures therein, comprises steps of providing a disc-shaped, writable recording medium having a planar surface; and encoding data/information in the medium by forming a plurality of multilevel nano-structured pits in the surface by scanning with a focused spot of optical energy to form at least one data track therein, including scanning the optical spot in a cross-track direction while rotating the disc about a central axis.
    Type: Application
    Filed: November 2, 2010
    Publication date: February 24, 2011
    Applicant: SEAGATE TECHNOLOGY LLC
    Inventors: Duane C. Karns, Dieter K. Weller, William A. Challener, Edward Gage, David S. Kuo, Neil Deeman, Shih-Fu Lee, Koichi Wago
  • Patent number: 7830775
    Abstract: A method of performing writable optical recording of a medium to form multilevel oriented nano-structures therein, comprises steps of providing a disc-shaped, writable recording medium having a planar surface; and encoding data/information in the medium by forming a plurality of multilevel nano-structured pits in the surface by scanning with a focused spot of optical energy to form at least one data track therein, including scanning the optical spot in a cross-track direction while rotating the disc about a central axis.
    Type: Grant
    Filed: February 13, 2006
    Date of Patent: November 9, 2010
    Assignee: Seagate Technology LLC
    Inventors: Duane C. Karns, Dieter K. Weller, William A. Challener, Edward Gage, David S. Kuo, Neil Deeman, Shih-Fu Lee, Koichi Wago