Patents by Inventor Dieter Neuschaefer
Dieter Neuschaefer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).
-
Patent number: 7820106Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: GrantFiled: February 8, 2006Date of Patent: October 26, 2010Assignee: Novartis AGInventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Publication number: 20060216204Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: ApplicationFiled: February 8, 2006Publication date: September 28, 2006Applicant: Novartis Pharmaceuticals CorporationInventors: Wolfgang Ernst Budach, Dieter Neuschaefer
-
Patent number: 7064844Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2 is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: GrantFiled: November 8, 2004Date of Patent: June 20, 2006Assignee: Novartis AGInventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Publication number: 20050117161Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2 is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: ApplicationFiled: November 8, 2004Publication date: June 2, 2005Applicant: Novartis Pharmaceuticals CorporationInventors: Wolfgang Budach, Dieter Neuschaefer
-
Patent number: 6870630Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: GrantFiled: October 9, 2003Date of Patent: March 22, 2005Assignee: Novartis AGInventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Patent number: 6867869Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: GrantFiled: October 9, 2003Date of Patent: March 15, 2005Assignee: Novartis AGInventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Patent number: 6771376Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: GrantFiled: January 10, 2002Date of Patent: August 3, 2004Assignee: Novartis AGInventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Publication number: 20040115825Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: ApplicationFiled: October 9, 2003Publication date: June 17, 2004Inventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Publication number: 20040115826Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: ApplicationFiled: October 9, 2003Publication date: June 17, 2004Inventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Patent number: 6710870Abstract: A method exites and determines a luminescence in an analyte sample which is located in contact with the waveguiding layer of an optical layer waveguide. The luminescence is generated by non-evanescent excitation in the volume of the analyte sample. Luminescence radiation generated in the immediate proximity of the surface of the waveguiding layer is conducted to a measuring device and determined after penetrating the waveguiding layer.Type: GrantFiled: August 3, 2000Date of Patent: March 23, 2004Assignee: Novartis AGInventors: Gerd Marowsky, Dieter Neuschaefer, Michael Pawlak
-
Patent number: 6707561Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an anormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: GrantFiled: July 5, 2000Date of Patent: March 16, 2004Assignee: Novartis AGInventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Publication number: 20020135780Abstract: A sensor platform for use in sample analysis comprises a substrate (30) of refractive index (n1) and a thin, optically transparent layer (32) of refractive index (n2) on the substrate, (n2) is greater than (n1). The platform incorporates one or multiple corrugated structures in the form of periodic grooves (31), (33), which defines one or more sensing areas each for one or more capture elements. The grooves are so profiled, dimensioned and oriented that when coherent light is incident on the platform it is diffracted into individual beams or diffraction order resulting in reduction of the transmitted beam and an abnormal high reflection of the incident light thereby creates an enhanced evanescent field at the surface of the or each sensing area. The amplitude of this field at the resonant condition is greater by an order of approximately 100 than the field of prior art platforms so that the luminescence intensity created from samples on the platform is also increased by a factor of 100.Type: ApplicationFiled: January 10, 2002Publication date: September 26, 2002Inventors: Wolfgang Ernst Gustav Budach, Dieter Neuschaefer
-
Patent number: 6289144Abstract: The invention relates to a sensor platform based on at least two planar, separate, inorganic dielectric waveguiding regions on a common substrate and to a method for the parallel evanescent excitation and detection of the luminescence of identical or different analytes. The invention relates also to a modified sensor platform that consists of the sensor platform having the planar, separate, inorganic dielectric waveguiding regions and one or more organic phases immobilised thereon. A further subject of the invention is the use of the sensor platform or of the modified sensor platform in a luminescence detection method for quantitative affinity sensing and for the selective quantitative determination of luminescent constituents of optically opaque solutions.Type: GrantFiled: January 19, 2000Date of Patent: September 11, 2001Assignee: Novartis AGInventors: Dieter Neuschäfer, Gert Ludwig Duveneck, Michael Pawlak, Uwe Pieles, Wolfgang Budach
-
Patent number: 6211954Abstract: An integrated-optical luminescence sensor having an excitation light beam with a first optical axis (kein), a planar waveguide (1), a sample interacting with the evanescent field thereof, and a detection beam path, with a second optical axis, that comes from the waveguide, and/or a coupling-out grating (7) for coupling out the portion of luminescence light guided in the waveguide, wherein the luminescence light to be detected is physically separate from the excitation light.Type: GrantFiled: November 5, 1999Date of Patent: April 3, 2001Assignee: Novartis AGInventors: Burkhard Danielzik, Dieter Neuschäfer, Michael Pawlak, Gert Ludwig Duveneck