Patents by Inventor Dieter R. Schmalzing

Dieter R. Schmalzing has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 6991713
    Abstract: A technique processes a sample of biomolecular analyte. The technique uses an apparatus having a support assembly that receives and supports a test module, a load assembly that loads the sample of biomolecular analyte onto the test module, an electrophoresis assembly that applies a current to the test module such that components within the sample separate by electrophoresis, and a controller that controls operations of the load assembly and the electrophoresis assembly. The load assembly and the electrophoresis assembly are coupled to the support assembly. The controller controls the operation of the load assembly in an automated manner. Preferably, the test module includes a dielectric plate member having an upper planar surface and a lower planar surface that is spaced apart from and coplanar with the upper planar surface. The dielectric plate member has at least one set of channels that includes an injection channel and a separation channel.
    Type: Grant
    Filed: January 23, 2001
    Date of Patent: January 31, 2006
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Aram S. Adourian, Daniel J. Ehrlich, Lance B. Koutny, Paul T. Matsudaira, Dieter R. Schmalzing
  • Publication number: 20010020588
    Abstract: A technique processes a sample of biomolecular analyte. The technique uses an apparatus having a support assembly that receives and supports a test module, a load assembly that loads the sample of biomolecular analyte onto the test module, an electrophoresis assembly that applies a current to the test module such that components within the sample separate by electrophoresis, and a controller that controls operations of the load assembly and the electrophoresis assembly. The load assembly and the electrophoresis assembly are coupled to the support assembly. The controller controls the operation of the load assembly in an automated manner. Preferably, the test module includes a dielectric plate member having an upper planar surface and a lower planar surface that is spaced apart from and coplanar with the upper planar surface. The dielectric plate member has at least one set of channels that includes an injection channel and a separation channel.
    Type: Application
    Filed: January 23, 2001
    Publication date: September 13, 2001
    Applicant: Whitehead Institute for Biomedical Research
    Inventors: Aram S. Adourian, Daniel J. Ehrlich, Lance B. Koutny, Paul T. Matsudaira, Dieter R. Schmalzing
  • Patent number: 6207031
    Abstract: A technique processes a sample of biomolecular analyte. The technique uses an apparatus having a support assembly that receives and supports a test module, a load assembly that loads the sample of biomolecular analyte onto the test module, an electrophoresis assembly that applies a current to the test module such that components within the sample separate by electrophoresis, and a controller that controls operations of the load assembly and the electrophoresis assembly. The load assembly and the electrophoresis assembly are coupled to the support assembly. The controller controls the operation of the load assembly in an automated manner. Preferably, the test module includes a dielectric plate member having an upper planar surface and a lower planar surface that is spaced apart from and coplanar with the upper planar surface. The dielectric plate member has at least one set of channels that includes an injection channel and a separation channel.
    Type: Grant
    Filed: September 14, 1998
    Date of Patent: March 27, 2001
    Assignee: Whitehead Institute for Biomedical Research
    Inventors: Aram S. Adourian, Daniel J. Ehrlich, Lance B. Koutny, Paul T. Matsudaira, Dieter R. Schmalzing
  • Patent number: 5948231
    Abstract: Compositions, methods, and apparatus for performing ultrafast binding assays by capillary electrophoresis or other electroseparation techniques are disclosed. In one embodiment, a first binding partner carries a detectable label and a second binding partner is modified to be highly charged. When used in combination with a sample containing an analyte with which both binding partners can interact and bind thereto, a three-membered complex is formed. The electrophoretic mobility difference between the unbound and complex-bound forms of labeled first binding partner is such that electroseparation and subsequent detection of an analyte can be accomplished. The compositions, methods, and apparatus disclosed herein also permit quantitative determination of the concentration of an analyte in a sample.
    Type: Grant
    Filed: May 8, 1997
    Date of Patent: September 7, 1999
    Assignee: PerSeptive Biosystems, Inc.
    Inventors: Martin Fuchs, Wassim A. Nashabeh, Dieter R. Schmalzing
  • Patent number: 5630924
    Abstract: Compositions, methods, and apparatus for performing ultrafast binding assays by capillary electrophoresis or other electroseparation techniques are disclosed. In one embodiment, a first binding partner carries a detectable label and a second binding partner is modified to be highly charged. When used in combination with a sample containing an analyte with which both binding partners can interact and bind thereto, a three-membered complex is formed. The electrophoretic mobility difference between the unbound and complex-bound forms of labeled first binding partner is such that electroseparation and subsequent detection of an analyte can be accomplished. The compositions, methods, and apparatus disclosed herein also permit quantitative determination of the concentration of an analyte in a sample.
    Type: Grant
    Filed: April 20, 1995
    Date of Patent: May 20, 1997
    Assignee: PerSeptive Biosystems, Inc.
    Inventors: Martin Fuchs, Wassim A. Nashabeh, Dieter R. Schmalzing