Patents by Inventor Dieter Ritter

Dieter Ritter has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240135557
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Application
    Filed: December 13, 2023
    Publication date: April 25, 2024
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Patent number: 11880986
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Grant
    Filed: June 9, 2021
    Date of Patent: January 23, 2024
    Assignee: Siemens Medical Solutions USA, Inc.
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Publication number: 20240012960
    Abstract: An apparatus for modeling a magnetic resonance tomography system, designed to provide a digital twin of the magnetic resonance tomography system, wherein the digital twin includes pre-defined interfaces corresponding to the interfaces between individual components of the magnetic resonance tomography system.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 11, 2024
    Applicant: Siemens Healthcare GmbH
    Inventor: Dieter Ritter
  • Publication number: 20240012079
    Abstract: The present disclosure relates to a magnetic resonance tomography system in which the field generation unit can be replaced by a digital emulation. Activation signals of a conventional system can be provided to this digital emulation. The digital emulation of the field generation unit outputs output signals that correspond to output signals of a hardware-based field generation unit.
    Type: Application
    Filed: July 5, 2023
    Publication date: January 11, 2024
    Applicant: Siemens Healthcare GmbH
    Inventor: Dieter Ritter
  • Patent number: 11774533
    Abstract: An imaging apparatus has an MRT system with an MR receiving antenna configured to receive a first receive signal containing an MR signal from an object to be examined during an examination period. The imaging apparatus includes a modality for examining the object and/or for acting on the object via mechanical or electromagnetic waves, wherein the modality has an electronic circuit. The imaging apparatus includes an auxiliary antenna arranged and configured to receive a second receive signal containing an interference signal generated by the electronic circuit during the examination period. The imaging apparatus has a processing system configured to suppress interference in the first receive signal based on the first and the second receive signal.
    Type: Grant
    Filed: May 16, 2022
    Date of Patent: October 3, 2023
    Assignee: SIEMENS HEALTHCARE GMBH
    Inventors: Philipp Hoecht, Juergen Nistler, Ludwig Eberler, Stephan Kannengiesser, Dieter Ritter, Stephan Biber, Rainer Schneider, Jan Bollenbeck
  • Patent number: 11747420
    Abstract: The present disclosure is directed to techniques for actuation of a magnetic resonance device for generating a high frequency pulse for specific saturation of nuclear spins in an examination region of an examination object. The techniques may include providing a frequency spectrum of the examination region, providing a B0 field map, establishing a first resonance frequency for a first tissue and a second resonance frequency for a second tissue taking account of the frequency spectrum, determining a saturation pulse by establishing a high frequency pulse configured for a spectrally selective excitation of the first tissue and the second tissue taking account of the first resonance frequency, the second resonance frequency and the B0 field map, and outputting the saturation pulse by means of the high frequency antenna unit.
    Type: Grant
    Filed: March 10, 2022
    Date of Patent: September 5, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: David Grodzki, Dieter Ritter
  • Patent number: 11733330
    Abstract: The disclosure relates to a magnetic resonance tomography scanner and to a method for operating the magnetic resonance tomography scanner. The method includes determining a B0 field map. The method further includes determining an excitation of the nuclear spins to be achieved and a spectrally selective excitation pulse for transmission by a transmitter by way of an antenna as a function of the B0 field map. In the method, the excitation pulse is configured here to generate the excitation of the nuclear spins to be achieved in the patient. The excitation pulse is then output by way of the antenna.
    Type: Grant
    Filed: February 5, 2021
    Date of Patent: August 22, 2023
    Assignee: Siemens Healthcare GmbH
    Inventors: David Grodzki, Michael Köhler, Dieter Ritter
  • Publication number: 20230176155
    Abstract: A method for determining a B0 map for, for example, performing an imaging magnetic resonance measurement using a magnetic resonance apparatus, includes measuring an original magnetic field distribution in a measurement volume of the magnetic resonance apparatus, and computing a final B0 map that describes a magnetic field distribution produced in the measurement volume of the magnetic resonance apparatus by setting a shim state. The magnetic field distribution produced in the measurement volume of the magnetic resonance apparatus by setting the shim state differs from the original magnetic field distribution.
    Type: Application
    Filed: December 1, 2022
    Publication date: June 8, 2023
    Inventors: David Grodzki, Dieter Ritter, Armin Nagel, Christian Eisen
  • Publication number: 20230100906
    Abstract: In a method for actuating a magnetic resonance system including a radio-frequency unit configured to generate a radio-frequency (RF) pulse for saturating nuclear spins in an examination area of an examination object, a BO card of the magnetic resonance system is loaded, frequency information of nuclear spins to be saturated in the examination area is loaded, a subarea of the examination area in which nuclear spins are to be saturated is determined, at least one RF saturation pulse for saturating the nuclear spins to be saturated in the determined subarea is determined based on the BO card and the frequency information, and the RF saturation pulse is output via the radio-frequency unit of the magnetic resonance system.
    Type: Application
    Filed: September 30, 2022
    Publication date: March 30, 2023
    Applicant: Siemens Healthcare GmbH
    Inventors: David Grodzki, Dieter Ritter
  • Publication number: 20230081502
    Abstract: In order to improve fat saturation in magnetic resonance technology (MRT) methods, a method for spectral saturation that includes specifying or ascertaining a first resonance frequency of a first substance and a first saturation frequency for a second substance is provided. A saturation pulse that causes no saturation of the first substance at the first resonance frequency is generated. The saturation pulse has a first spectral peak for saturation of the second substance at the first saturation frequency and a second spectral peak at a second saturation frequency. This allows a widening of a spectral saturation bandwidth of a dynamic saturation.
    Type: Application
    Filed: September 9, 2022
    Publication date: March 16, 2023
    Inventors: David Grodzki, Dieter Ritter, Patrick Liebig, Rainer Schneider
  • Publication number: 20220398754
    Abstract: A framework for gantry alignment of a multimodality medical scanner. First image data of a non-radioactive structure is acquired by using intrinsic radiation emitted by scintillator crystals of detectors in a first gantry of the multimodality medical scanner. Second image data of the non-radioactive structure is acquired using a second gantry for another modality of the multimodality medical scanner. Image reconstruction may be performed based on the first and second image data of the non-radioactive structure to generate first and second reconstructed image volumes. A gantry alignment transformation that aligns the first and second reconstructed image volumes may then be determined.
    Type: Application
    Filed: June 9, 2021
    Publication date: December 15, 2022
    Inventors: Paul Schleyer, Deepak Bharkhada, Harold E. Rothfuss, Mohammadreza Teimoorisichani, Dieter Ritter
  • Publication number: 20220373626
    Abstract: An imaging apparatus has an MRT system with an MR receiving antenna configured to receive a first receive signal containing an MR signal from an object to be examined during an examination period. The imaging apparatus includes a modality for examining the object and/or for acting on the object via mechanical or electromagnetic waves, wherein the modality has an electronic circuit. The imaging apparatus includes an auxiliary antenna arranged and configured to receive a second receive signal containing an interference signal generated by the electronic circuit during the examination period. The imaging apparatus has a processing system configured to suppress interference in the first receive signal based on the first and the second receive signal.
    Type: Application
    Filed: May 16, 2022
    Publication date: November 24, 2022
    Applicant: Siemens Healthcare GmbH
    Inventors: Philipp HOECHT, Juergen NISTLER, Ludwig EBERLER, Stephan KANNENGIESSER, Dieter RITTER, Stephan BIBER, Rainer SCHNEIDER, Jan BOLLENBECK
  • Publication number: 20220296119
    Abstract: A method for performing a magnetic resonance measurement of a patient using a magnetic resonance apparatus is provided. The magnetic resonance apparatus includes a radiofrequency antenna unit for producing an excitation pulse. A first B0 field map for a first motion state of the patient, and a second B0 field map for a second motion state of the patient are provided. A first excitation pulse for the first motion state, and a second excitation pulse for the second motion state are determined based on the first B0 field map and the second B0 field map. A magnetic resonance measurement is performed, during which the motion state of the patient is monitored. When the patient is in the first motion state, the radiofrequency antenna unit transmits the first excitation pulse. When the patient is in the second motion state, the radiofrequency antenna unit transmits the second excitation pulse.
    Type: Application
    Filed: March 17, 2022
    Publication date: September 22, 2022
    Inventors: David Grodzki, Dieter Ritter
  • Publication number: 20220291316
    Abstract: The present disclosure is directed to techniques for actuation of a magnetic resonance device for generating a high frequency pulse for specific saturation of nuclear spins in an examination region of an examination object. The techniques may include providing a frequency spectrum of the examination region, providing a B0 field map, establishing a first resonance frequency for a first tissue and a second resonance frequency for a second tissue taking account of the frequency spectrum, determining a saturation pulse by establishing a high frequency pulse configured for a spectrally selective excitation of the first tissue and the second tissue taking account of the first resonance frequency, the second resonance frequency and the B0 field map, and outputting the saturation pulse by means of the high frequency antenna unit.
    Type: Application
    Filed: March 10, 2022
    Publication date: September 15, 2022
    Applicant: Siemens Healthcare GmbH
    Inventors: David Grodzki, Dieter Ritter
  • Publication number: 20210278492
    Abstract: The disclosure relates to a magnetic resonance tomography scanner and to a method for operating the magnetic resonance tomography scanner. The method includes determining a B0 field map. The method further includes determining an excitation of the nuclear spins to be achieved and a spectrally selective excitation pulse for transmission by a transmitter by way of an antenna as a function of the B0 field map. In the method, the excitation pulse is configured here to generate the excitation of the nuclear spins to be achieved in the patient. The excitation pulse is then output by way of the antenna.
    Type: Application
    Filed: February 5, 2021
    Publication date: September 9, 2021
    Inventors: David Grodzki, Michael Köhler, Dieter Ritter
  • Patent number: 10996307
    Abstract: In a magnetic resonance tomography (MRT) apparatus and operating method, a field of view for imaging a target object is acquired. A relative position of this field of view in relation to a receiving space of the MRT scanner, in which the target object is received, is then automatically determined. A radio-frequency (RF) pulse to be used by the MRT scanner for imaging the target object is then automatically adjusted depending on this relative position. An excitation angle produced in the field of view by the RF pulse is changed compared to the use of the corresponding unadjusted RF pulse.
    Type: Grant
    Filed: June 12, 2019
    Date of Patent: May 4, 2021
    Assignee: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, George William Ferguson, Michael Koehler, Dieter Ritter, Dominik Paul
  • Patent number: 10761164
    Abstract: A method for generating a spatially resolved magnetic resonance dataset using a coil arrangement includes providing at least one correction datum based on receiver characteristics of the coil arrangement. The method also includes providing a magnetic resonance dataset with spatially resolved signal intensity data, and correcting the at least one signal intensity datum in the magnetic resonance dataset by the correction datum before or after providing the magnetic resonance dataset.
    Type: Grant
    Filed: April 28, 2018
    Date of Patent: September 1, 2020
    Assignee: Siemens Healthcare GmbH
    Inventors: Marc Beckmann, Petra Bildhauer, Carsten Großhauser, Hubertus Fischer, Uvo Hölscher, Ralf Kartäusch, Jürgen Nistler, Dominik Paul, Dieter Ritter, Volker Weißenberger
  • Publication number: 20190377052
    Abstract: In a magnetic resonance tomography (MRT) apparatus and operating method, a field of view for imaging a target object is acquired. A relative position of this field of view in relation to a receiving space of the MRT scanner, in which the target object is received, is then automatically determined. A radio-frequency (RF) pulse to be used by the MRT scanner for imaging the target object is then automatically adjusted depending on this relative position. An excitation angle produced in the field of view by the RF pulse is changed compared to the use of the corresponding unadjusted RF pulse.
    Type: Application
    Filed: June 12, 2019
    Publication date: December 12, 2019
    Applicant: Siemens Healthcare GmbH
    Inventors: Flavio Carinci, George William Ferguson, Michael Koehler, Dieter Ritter, Dominik Paul
  • Patent number: 10120047
    Abstract: In a method and magnetic resonance apparatus for performing at least one adjusting measurement for the magnetic resonance apparatus, a localizing measurement is performed using the magnetic resonance apparatus and a localization dataset is created, and at least one examination region on the localization dataset. At least one examination region of the localization dataset is selected, and at least one adjusting measurement is performed according to the at least one selected examination region. The at least one adjusting measurement can be the calculation of a radio-frequency pulse amplitude, the calculation of a system frequency and the calculation of at least one current of at least one shim coil.
    Type: Grant
    Filed: August 21, 2015
    Date of Patent: November 6, 2018
    Assignee: Siemens Aktiengesellschaft
    Inventors: Wilhelm Horger, Michael Koehler, Dieter Ritter, Michael Wullenweber
  • Publication number: 20180313922
    Abstract: A method for generating a spatially resolved magnetic resonance dataset using a coil arrangement includes providing at least one correction datum based on receiver characteristics of the coil arrangement. The method also includes providing a magnetic resonance dataset with spatially resolved signal intensity data, and correcting the at least one signal intensity datum in the magnetic resonance dataset by the correction datum before or after providing the magnetic resonance dataset.
    Type: Application
    Filed: April 28, 2018
    Publication date: November 1, 2018
    Inventors: Marc Beckmann, Petra Bildhauer, Carsten Großhauser, Hubertus Fischer, Uvo Hölscher, Ralf Kartäusch, Jürgen Nistler, Dominik Paul, Dieter Ritter, Volker Weißenberger