Patents by Inventor Dieter Soll

Dieter Soll has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Publication number: 20240200049
    Abstract: Compositions, systems, and methods for preparation of polypeptides having multiple iterations of non-standard amino acids are provided. The compositions and method can be used to produce recombinant proteins at a greater yield than the same or similar polypeptides made using conventional compositions, systems, and methods. Accordingly, in some embodiments, the polypeptides are ones that could not be made using conventional methods and reagents, or could not be made a sufficient yield or purity to serve a practical purpose using conventional methods and reagents. Polypeptides made using the disclosed compositions, systems, and methods are also provided.
    Type: Application
    Filed: March 31, 2023
    Publication date: June 20, 2024
    Inventors: Farren Isaacs, Miriam Amiram, Adrian Haimovich, Dieter Soll
  • Patent number: 11788111
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Grant
    Filed: October 4, 2018
    Date of Patent: October 17, 2023
    Assignee: YALE UNIVERSITY
    Inventors: Dieter Soll, Takahito Mukai, Kyle Hoffman
  • Publication number: 20220306677
    Abstract: Compositions and methods of making hybrid polypeptides and other polymers are disclosed. For example, functionalized tRNA having a functional molecule including a benzoic acid or benzoic acid derivative acylated to the 3? nucleotide of a tRNA are provided. Functionalized tRNA having a functional molecule including a malonic acid or malonic acid derivative acylated to the 3? nucleotide of a tRNA are also provided. Methods of using the functionalized tRNA for making compounds including the functional molecule are also provided. The methods typically include providing or expressing a messenger RNA (mRNA) encoding the target polypeptide in a translation system including one or more functionalized tRNA wherein each functionalized tRNA recognizes at least one codon such that its functional molecule is incorporated into the polypeptide or other polymer during translation. The incorporation of the functional molecule can occur in vitro in a cell-free translation system, or in vivo in a host cell.
    Type: Application
    Filed: June 4, 2020
    Publication date: September 29, 2022
    Inventors: Omer Ad, Kyle S. Hoffman, Andrew G. Cairns, Aaron L. Featherston, Scott J. Miller, Dieter Soll, Alanna Schepartz
  • Patent number: 10876142
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Grant
    Filed: October 4, 2017
    Date of Patent: December 29, 2020
    Assignee: YALE UNIVERSITY
    Inventors: Dieter Söll, Caroline Aldag, Michael Hohn, Takahito Mukai
  • Publication number: 20200385742
    Abstract: Nucleic acids encoding mutant elongation factor proteins (EF-Sep), phosphoseryl-tRNA synthetase (SepRS), and phosphoseryl-tRNA (tRNASep) and methods of use in site specific incorporation of phosphoserine into & protein or polypeptide are described. Typically, SepRS preferentially aminoacylates tRNASepwith O-phosphoserine and the tRNASep recognizes at least one codon such as a stop codon. Due to the negative charge of the phosphoserine, Sep-tRNASep does not bind elongation factor Tu (EF-Tu). However, mutant EF-Sep proteins are disclosed that bind Sep-tRNASep and protect Sep-tRNASep from deacylation. In a preferred embodiment the nucleic acids are on vectors and are expressed in cells such as bacterial cells, archeaebacterial cells, and eukaryotic cells.
    Type: Application
    Filed: January 17, 2020
    Publication date: December 10, 2020
    Inventors: Hee-Sung Park, Dieter Soll
  • Publication number: 20200332336
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Application
    Filed: October 4, 2018
    Publication date: October 22, 2020
    Inventors: Dieter Soll, Takahito Mukai, Kyle Hoffman
  • Publication number: 20200190500
    Abstract: Compositions, systems, and methods for preparation of polypeptides having multiple iterations of non-standard amino acids are provided. The compositions and method can be used to produce recombinant proteins at a greater yield than the same or similar polypeptides made using conventional compositions, systems, and methods. Accordingly, in some embodiments, the polypeptides are ones that could not be made using conventional methods and reagents, or could not be made a sufficient yield or purity to serve a practical purpose using conventional methods and reagents. Polypeptides made using the disclosed compositions, systems, and methods are also provided.
    Type: Application
    Filed: October 23, 2019
    Publication date: June 18, 2020
    Inventors: Farren Isaacs, Miriam Amiram, Adrian Haimovich, Dieter Soll
  • Patent number: 10538773
    Abstract: Nucleic acids encoding mutant elongation factor proteins (EF-Sep), phosphoseryl-tRNA synthetase (SepRS), and phosphoseryl-tRNA (tRNASep) and methods of use in site specific incorporation of phosphoserine into a protein or polypeptide are described. Mutant EF-Sep proteins are disclosed that bind Sep-tRNASep and protect Sep-tRNASep from deacylation. In a preferred embodiment the nucleic acids are on vectors and are expressed in cells such as bacterial cells, archeaebacterial cells, and eukaryotic cells. Proteins or polypeptides containing phosphoserine produced by the methods described herein can be used for a variety of applications such as research, antibody production, protein array manufacture and development of cell-based screens for new drug discovery.
    Type: Grant
    Filed: February 22, 2017
    Date of Patent: January 21, 2020
    Assignee: Yale University
    Inventors: Hee-Sung Park, Dieter Soll
  • Patent number: 10501734
    Abstract: Compositions, systems, and methods for preparation of polypeptides having multiple iterations of non-standard amino acids are provided. The compositions and method can be used to produce recombinant proteins at a greater yield than the same or similar polypeptides made using conventional compositions, systems, and methods. Accordingly, in some embodiments, the polypeptides are ones that could not be made using conventional methods and reagents, or could not be made a sufficient yield or purity to serve a practical purpose using conventional methods and reagents. Polypeptides made using the disclosed compositions, systems, and methods are also provided.
    Type: Grant
    Filed: February 6, 2015
    Date of Patent: December 10, 2019
    Assignee: Yale University
    Inventors: Farren J. Isaacs, Miriam Amiram, Adrian Haimovich, Dieter Söll
  • Patent number: 10240158
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Grant
    Filed: July 5, 2016
    Date of Patent: March 26, 2019
    Assignee: Yale University
    Inventors: Dieter Soll, Caroline Aldag, Michael Hohn, Corwin Miller
  • Patent number: 10023893
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Grant
    Filed: September 23, 2016
    Date of Patent: July 17, 2018
    Assignee: Yale University
    Inventors: Dieter Soll, Caroline Aldag, Michael Hohn
  • Publication number: 20180105854
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Application
    Filed: October 4, 2017
    Publication date: April 19, 2018
    Inventors: Dieter Söll, Caroline Aldag, Michael Hohn, Takahito Mukai
  • Publication number: 20170233749
    Abstract: Nucleic acids encoding mutant elongation factor proteins (EF-Sep), phosphoseryl-tRNA synthetase (SepRS), and phosphoseryl-tRNA (tRNASep) and methods of use in site specific incorporation of phosphoserine into a protein or polypeptide are described. Typically, SepRS preferentially aminoacrylates tRNASep with O-phosphoserine and the tRNASep recognizes at least one codon such as a stop codon. Due to the negative charge of the phosphoserine, Sep-tRNASep does not bind elongation factor Tu (EF-Tu). However, mutant EF-Sep proteins are disclosed that bind Sep-tRNASep and protect Sep-tRNASep from deacylation. In a preferred embodiment the nucleic acids are on vectors and are expressed in cells such as bacterial cells, archeacbacterial cells, and eukaryotic cells. Proteins or polypeptides containing phosphoserine produced by the methods described herein can be used for a variety of applications such as research, antibody production, protein array manufacture and development of cell-based screens for new drug discovery.
    Type: Application
    Filed: February 22, 2017
    Publication date: August 17, 2017
    Inventors: Hee-Sung Park, Dieter Soll
  • Patent number: 9580716
    Abstract: Nucleic acids encoding mutant elongation factor proteins (EF-Sep), phosphoseryl-tRNA synthetase (SepRS), and phosphoseryl-tRNA (tRNASep) and methods of use in site specific incorporation of phosphoserine into a protein or polypeptide are described. Typically, SepRS preferentially aminoacylates tRNASep with O-phosphoserine and the tRNASep recognizes at least one codon such as a stop codon. Due to the negative charge of the phosphoserine, Sept-tRNASep does not bind elongation factor Tu (EF-Tu). However, mutant EF-Sep proteins are disclosed that bind Sep-tRNASep and protect Sep-tRNASep from deacylation. In a preferred embodiment the nucleic acids are on vectors and are expressed in cells such as bacterial cells, archeaebacterial cells, and eukaryotic cells. Proteins or polypeptides containing phosphoserine produced by the methods described herein can be used for a variety of applications such as research, antibody production, protein array manufacture and development of cell-based screens for new drug discovery.
    Type: Grant
    Filed: January 11, 2016
    Date of Patent: February 28, 2017
    Assignee: Yale University
    Inventors: Hee-Sung Park, Dieter Soll
  • Patent number: 9567594
    Abstract: Nucleic acids encoding mutant elongation factor proteins (EF-Sep), phosphoseryl-tRNA synthetase (SepRS), and phosphoseryl-tRNA (tRNASep) and methods of use in site specific incorporation of phosphoserine into a protein or polypeptide are described. Typically, SepRS preferentially aminoacylates tRNASep with O-phosphoserine and the tRNASep recognizes at least one codon such as a stop codon. Due to the negative charge of the phosphoserine, Sept-tRNASep does not bind elongation factor Tu (EF-Tu). However, mutant EF-Sep proteins are disclosed that bind Sep-tRNASep and protect Sep-tRNASep from deacylation. In a preferred embodiment the nucleic acids are on vectors and are expressed in cells such as bacterial cells, archeaebacterial cells, and eukaryotic cells. Proteins or polypeptides containing phosphoserine produced by the methods described herein can be used for a variety of applications such as research, antibody production, protein array manufacture and development of cell-based screens for new drug discovery.
    Type: Grant
    Filed: July 9, 2015
    Date of Patent: February 14, 2017
    Assignee: Yale University
    Inventors: Hee-Sung Park, Dieter Soll
  • Publication number: 20170029858
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Application
    Filed: September 23, 2016
    Publication date: February 2, 2017
    Inventors: Dieter Soll, Caroline Aldag, Michael Hohn
  • Publication number: 20170002347
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Application
    Filed: July 5, 2016
    Publication date: January 5, 2017
    Inventors: Dieter Soll, Caroline Aldag, Michael Hohn, Corwin Miller
  • Publication number: 20160355802
    Abstract: Compositions, systems, and methods for preparation of polypeptides having multiple iterations of non-standard amino acids are provided. The compositions and method can be used to produce recombinant proteins at a greater yield than the same or similar polypeptides made using conventional compositions, systems, and methods. Accordingly, in some embodiments, the polypeptides are ones that could not be made using conventional methods and reagents, or could not be made a sufficient yield or purity to serve a practical purpose using conventional methods and reagents. Polypeptides made using the disclosed compositions, systems, and methods are also provided.
    Type: Application
    Filed: February 6, 2015
    Publication date: December 8, 2016
    Inventors: Farren J. Isaacs, Miriam Amiram, Adrian Haimovich, Dieter Söll
  • Patent number: 9464288
    Abstract: Non-naturally occurring tRNASec and methods of using them for recombinant expression of proteins engineered to include one or more selenocysteine residues are disclosed. The non-naturally occurring tRNASec can be used for recombinant manufacture of selenocysteine containing polypeptides encoded by mRNA without the requirement of an SECIS element. In some embodiments, selenocysteine containing polypeptides are manufactured by co-expressing a non-naturally occurring tRNASec a recombinant expression system, such as E. coli, with SerRS, EF-Tu, SelA, or PSTK and SepSecS, and an mRNA with at least one codon that recognizes the anticodon of the non-naturally occurring tRNASec.
    Type: Grant
    Filed: July 11, 2012
    Date of Patent: October 11, 2016
    Assignee: Yale University
    Inventors: Dieter Soll, Caroline Aldag, Michael Hohn
  • Publication number: 20160186189
    Abstract: Nucleic acids encoding mutant elongation factor proteins (EF-Sep), phosphoseryl-tRNA synthetase (SepRS), and phosphoseryl-tRNA (tRNASep) and methods of use in site specific incorporation of phosphoserine into a protein or polypeptide are described. Typically, SepRS preferentially aminoacylates tRNASep with O-phosphoserine and the tRNASep recognizes at least one codon such as a stop codon. Due to the negative charge of the phosphoserine, Sept-tRNASep does not bind elongation factor Tu (EF-Tu). However, mutant EF-Sep proteins are disclosed that bind Sep-tRNASep and protect Sep-tRNASep from deacylation. In a preferred embodiment the nucleic acids are on vectors and are expressed in cells such as bacterial cells, archeaebacterial cells, and eukaryotic cells. Proteins or polypeptides containing phosphoserine produced by the methods described herein can be used for a variety of applications such as research, antibody production, protein array manufacture and development of cell-based screens for new drug discovery.
    Type: Application
    Filed: January 11, 2016
    Publication date: June 30, 2016
    Inventors: Hee-Sung Park, Dieter Soll