Patents by Inventor Dieter Stuetzer

Dieter Stuetzer has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 8933262
    Abstract: The present invention relates to a process for preparing polyisocyanates from natural raw material sources, in which a composition comprising low molecular weight aromatics which comprise at least one hydroxy group or at least one alkoxy group per molecule (oxyaromatics) is produced from a biomass material, these oxyaromatics are converted into the corresponding aromatic amines and, optionally after condensation with formaldehyde, reacted further with phosgene to give compounds comprising isocyanate groups.
    Type: Grant
    Filed: May 24, 2012
    Date of Patent: January 13, 2015
    Assignee: BASF SE
    Inventors: Eckhard Stroefer, Otto Machhammer, Stefan Bitterlich, Roman Prochazka, Mario Emmeluth, Julia Leschinski, Emmanouil Pantouflas, Dirk Klingler, Stephan Deuerlein, Stephan Schunk, Jochem Henkelmann, Dieter Stützer
  • Patent number: 8796496
    Abstract: The present invention relates to a process for nonoxidatively dehydroaromatizing a reactant stream comprising C1-C4-aliphatics, comprising the steps of I. feeding reactant stream E into a reaction zone 1, converting reactant stream E under nonoxidative conditions in the presence of a particulate catalyst to a product stream P comprising aromatic hydrocarbons and discharging product stream P from reaction zone 1, II. transferring the catalyst with reduced activity as a result of deposited coke into a reaction zone 2, III. at least partly regenerating the catalyst with supply of a hydrogen-comprising gas stream H in a reaction zone 2, at least some of the coke deposited being converted to methane to form a methane-comprising gas stream M which is fed at least partly to reaction zone 1, IV. discharging the catalyst from reaction zone 2 and V.
    Type: Grant
    Filed: August 23, 2010
    Date of Patent: August 5, 2014
    Assignee: BASF SE
    Inventors: Christian Schneider, Martin Karches, Joana Coelho Tsou, Sebastian Ahrens, Dieter Stuetzer
  • Publication number: 20140155257
    Abstract: The invention relates to a method of production of catalyst particles, comprising platinum and tin and also at least one further element, selected from lanthanum and cesium, on zirconium dioxide as support, comprising the steps: preparation of one or more solutions containing precursor compounds of Pt, Sn and at least one further element of La or Cs and also ZrO2, converting the solution(s) to an aerosol, bringing the aerosol into a directly or indirectly heated pyrolysis zone, carrying out pyrolysis, and separation of the particles formed from the pyrolysis gas. Suitable precursor compounds comprise zirconium(IV) acetylacetonate, lanthanum(II) acetylacetonate and cesium acetate, hexamethyldisiloxane, tin 2-ethylhexanoate, platinum acetylacetonate, zirconium(IV) propylate in n-propanol and lanthanum(II) acetylacetonate. The invention also relates to the catalyst particles obtainable using the method according to the invention, and to the use thereof as dehydrogenation catalysts.
    Type: Application
    Filed: February 4, 2014
    Publication date: June 5, 2014
    Applicant: BASF SE
    Inventors: Stefan Hannemann, Dieter Stützer, Goetz-Peter Schindler, Peter Pfab, Frank Kleine Jäger, Dirk Großschmidt
  • Patent number: 8680005
    Abstract: The invention relates to a method of production of catalyst particles, comprising platinum and tin and also at least one further element, selected from lanthanum and cesium, on zirconium dioxide as support, comprising the steps: preparation of one or more solutions containing precursor compounds of Pt, Sn and at least one further element of La or Cs and also ZrO2, converting the solution(s) to an aerosol, bringing the aerosol into a directly or indirectly heated pyrolysis zone, carrying out pyrolysis, and separation of the particles formed from the pyrolysis gas. Suitable precursor compounds comprise zirconium(IV) acetylacetonate, lanthanum(II) acetylacetonate and cesium acetate, hexamethyldisiloxane, tin 2-ethylhexanoate, platinum acetylacetonate, zirconium(IV) propylate in n-propanol and lanthanum(II) acetylacetonate. The invention also relates to the catalyst particles obtainable using the method according to the invention, and to the use thereof as dehydrogenation catalysts.
    Type: Grant
    Filed: January 24, 2012
    Date of Patent: March 25, 2014
    Assignee: BASF SE
    Inventors: Stefan Hannemann, Dieter Stützer, Goetz-Peter Schindler, Peter Pfab, Frank Kleine Jäger, Dirk Groβschmidt
  • Patent number: 8436204
    Abstract: The invention provides a process for preparing isocyanates by reacting amines with phosgene, wherein the amine or a mixture of amine and a solvent is mixed in the form of an aerosol with gaseous phosgene and the amine is subsequently reacted with phosgene.
    Type: Grant
    Filed: July 5, 2007
    Date of Patent: May 7, 2013
    Assignee: BASF Aktiengesellschaft
    Inventors: Carsten Knoesche, Eckhard Stroefer, Dieter Stuetzer, Bernd Sachweh, Markus Linsenbuhler, Andreas Woelfert
  • Publication number: 20120302786
    Abstract: The present invention relates to a process for preparing polyisocyanates from natural raw material sources, in which a composition comprising low molecular weight aromatics which comprise at least one hydroxy group or at least one alkoxy group per molecule (oxyaromatics) is produced from a biomass material, these oxyaromatics are converted into the corresponding aromatic amines and, optionally after condensation with formaldehyde, reacted further with phosgene to give compounds comprising isocyanate groups.
    Type: Application
    Filed: May 24, 2012
    Publication date: November 29, 2012
    Applicant: BASF SE
    Inventors: Eckhard Stroefer, Otto Machhammer, Stefan Bitterlich, Roman Prochazka, Mario Emmeluth, Julia Leschinski, Emmanouil Pantouflas, Dirk Klingler, Stephan Deuerlein, Stephan Schunk, Jochem Henkelmann, Dieter Stützer
  • Publication number: 20120190538
    Abstract: The invention relates to a method of production of catalyst particles, comprising platinum and tin and also at least one further element, selected from lanthanum and cesium, on zirconium dioxide as support, comprising the steps: preparation of one or more solutions containing precursor compounds of Pt, Sn and at least one further element of La or Cs and also ZrO2, converting the solution(s) to an aerosol, bringing the aerosol into a directly or indirectly heated pyrolysis zone, carrying out pyrolysis, and separation of the particles formed from the pyrolysis gas. Suitable precursor compounds comprise zirconium(IV) acetylacetonate, lanthanum(II) acetylacetonate and cesium acetate, hexamethyldisiloxane, tin 2-ethylhexanoate, platinum acetylacetonate, zirconium(IV) propylate in n-propanol and lanthanum(II) acetylacetonate. The invention also relates to the catalyst particles obtainable using the method according to the invention, and to the use thereof as dehydrogenation catalysts.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 26, 2012
    Applicant: BASF SE
    Inventors: Stefan Hannemann, Dieter Stützer, Goetz-Peter Schindler, Peter Pfab, Frank Kleine Jäger, Dirk Großschmidt
  • Publication number: 20120190537
    Abstract: The invention relates to a method of production of catalyst support particles, containing zirconium dioxide and optionally silicon oxide, comprising the steps (i) preparation of a solution containing precursor compounds of zirconium dioxide and optionally of silicon dioxide, (ii) converting the solution(s) to an aerosol, (iii) bringing the aerosol into a directly or indirectly heated pyrolysis zone, (iv) carrying out pyrolysis, and (v) separation of the catalyst particles formed from the pyrolysis gas.
    Type: Application
    Filed: January 24, 2012
    Publication date: July 26, 2012
    Applicant: BASF SE
    Inventors: Stefan Hannemann, Dieter Stützer, Goetz-Peter Schindler, Peter Pfab, Frank Kleine Jäger, Dirk Grossschmidt
  • Publication number: 20120165585
    Abstract: The present invention relates to a process for nonoxidatively dehydroaromatizing a reactant stream comprising C1-C4-aliphatics, comprising the steps of I. feeding reactant stream E into a reaction zone 1, converting reactant stream E under nonoxidative conditions in the presence of a particulate catalyst to a product stream P comprising aromatic hydrocarbons and discharging product stream P from reaction zone 1, II. transferring the catalyst with reduced activity as a result of deposited coke into a reaction zone 2, III. at least partly regenerating the catalyst with supply of a hydrogen-comprising gas stream H in a reaction zone 2, at least some of the coke deposited being converted to methane to form a methane-comprising gas stream M which is fed at least partly to reaction zone 1, IV. discharging the catalyst from reaction zone 2 and V.
    Type: Application
    Filed: August 23, 2010
    Publication date: June 28, 2012
    Applicant: BASF SE
    Inventors: Christian Schneider, Martin Karches, Joana Coelho Tsou, Sebastian Ahrens, Dieter Stuetzer
  • Patent number: 8044244
    Abstract: A process for preparing aromatic amines by catalytic hydrogenation of the corresponding nitro compound in a fluidized-bed reactor, in which a gaseous reaction mixture comprising the nitro compound and hydrogen flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed, wherein the fluidized bed is provided with internals which divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous, particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 25, 2011
    Assignee: BASF SE
    Inventors: Lothar Seidemann, Lucia Koenigsmann, Christian Schneider, Ekkehard Schwab, Dieter Stuetzer, Celine Liekens
  • Patent number: 8038950
    Abstract: A fluidized-bed reactor for carrying out a gas-phase reaction, in which a gaseous reaction mixture flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed and internals are arranged in the fluidized bed, wherein the internals divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Grant
    Filed: September 14, 2007
    Date of Patent: October 18, 2011
    Assignee: BASF Aktiengesellschaft
    Inventors: Lothar Seidemann, Dieter Stuetzer, Thomas Grassler, Martin Karches, Christian Schneider
  • Publication number: 20100048955
    Abstract: A process for preparing aromatic amines by catalytic hydrogenation of the corresponding nitro compound in a fluidized-bed reactor, in which a gaseous reaction mixture comprising the nitro compound and hydrogen flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed, wherein the fluidized bed is provided with internals which divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous, particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Application
    Filed: September 14, 2007
    Publication date: February 25, 2010
    Applicant: BASF SE
    Inventors: Lothar Seidemann, Lucia Koenigsmann, Christian Schneider, Ekkehard Schwab, Dieter Stuetzer, Celine Liekens
  • Patent number: 7662900
    Abstract: The present invention relates to a process for preparing polyisobutene by polymerizing isobutene using an inert diluent and a halogen-containing Lewis acid as a catalyst, wherein the isobutene in the form of droplets is contacted with the Lewis acid in a polymerization apparatus.
    Type: Grant
    Filed: October 10, 2006
    Date of Patent: February 16, 2010
    Assignee: BASF Aktiengesellschaft
    Inventors: Volker Seidl, Carolin Nadine Duecker, Alexandra Wiedemann, Thomas Wettling, Uwe Rachwalsky, Marco-Christian Volland, Martin Karches, Franz Weber, Dieter Stuetzer, Werner Bochnitschek
  • Publication number: 20100021354
    Abstract: A fluidized-bed reactor for carrying out a gas-phase reaction, in which a gaseous reaction mixture flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed and internals are arranged in the fluidized bed, wherein the internals divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Application
    Filed: September 14, 2007
    Publication date: January 28, 2010
    Applicant: BASF SE
    Inventors: Lothar Seidemann, Dieter Stuetzer, Thomas Grassler, Martin Karches, Christian Schneider
  • Publication number: 20090281350
    Abstract: The invention provides a process for preparing isocyanates by reacting amines with phosgene, wherein the amine or a mixture of amine and a solvent is mixed in the form of an aerosol with gaseous phosgene and the amine is subsequently reacted with phosgene.
    Type: Application
    Filed: July 5, 2007
    Publication date: November 12, 2009
    Applicant: BASF SE
    Inventors: Carsten Knoesche, Eckhard Stroefer, Dieter Stuetzer, Bernd Sachweh, Markus Lisenbuehler, Andreas Woelfert
  • Publication number: 20090269270
    Abstract: A process for preparing chlorine in a fluidized-bed reactor, in which a gaseous reaction mixture comprising hydrogen chloride and oxygen flows from the bottom upward through a heterogeneous particulate catalyst forming a fluidized bed, wherein the fluidized bed is provided with internals which divide the fluidized bed into a plurality of cells arranged horizontally in the fluidized-bed reactor and a plurality of cells arranged vertically in the fluidized-bed reactor, with the cells having cell walls which are permeable to gas and have openings which ensure an exchange number of the heterogeneous, particulate catalyst in the vertical direction in the range from 1 to 100 liters/hour per liter of reactor volume, is proposed.
    Type: Application
    Filed: September 19, 2007
    Publication date: October 29, 2009
    Applicant: BASF SE
    Inventors: Lothar Seidemann, Martin Karches, Dieter Stuetzer, Martin Sesing, Olga Schubert, Heiko Urtel
  • Patent number: 6838061
    Abstract: A reactor (1) of high cylindrical construction for continuously carrying out gas-liquid, liquid-liquid or gas-liquid-solid reactions, provided with a downward-directed jet nozzle (2) via which the starting materials and the reaction mixture are fed in and which is located in the upper region of the reactor, and provided with an offtake (3), preferably in the lower region of the reactor, via which the reaction mixture is conveyed via an external circuit back to the jet nozzle (2) by means of a pump (P), wherein a guide tube (4) which extends essentially over the total length of the reactor (1) with the exception of the reactor ends and has a cross-sectional area in the range from one tenth to one half of the cross-sectional area of the reactor (1) is located concentrically in the reactor (1), and the jet nozzle (2) is located above the upper end of the guide tube (4), preferably at a distance of from one eighth of the guide tube diameter to one guide tube diameter, or projects into the guide tube (4) to a dept
    Type: Grant
    Filed: November 23, 1999
    Date of Patent: January 4, 2005
    Assignee: BASF Aktiengesellschaft
    Inventors: Stefan Berg, Peter Zehner, Regina Benfer, Jörn Müller, Michael Nilles, Ralf Schulz, Dieter Stützer
  • Patent number: 6673972
    Abstract: Polyetherpolyols are prepared by reacting diols or polyols with ethylene oxide, propylene oxide, butylene oxide or a mixture thereof in the presence of a multimetal cyanide complex catalyst by a process which is carried out in a vertical upright cylindrical reactor comprising a jet nozzle which is arranged in the upper reactor region and is directed downward and via which the starting materials and the reaction mixture are fed in, and comprising a take-off, preferably in the lower reactor region, via which the reaction mixture is fed back to the jet nozzle in an external circulation by means of a pump via an equilibration container, comprising a concentric guide tube which extends over the total length of the reactor, except for the reactor ends, and comprising a heat exchanger integrated in the annular space.
    Type: Grant
    Filed: July 5, 2002
    Date of Patent: January 6, 2004
    Assignee: BASF Aktiengesellschaft
    Inventors: Thomas Ostrowski, Kathrin Harre, Peter Zehner, Jörn Müller, Dieter Stützer, Georg Heinrich Grosch, Jürgen Winkler, Stephan Bauer
  • Patent number: 6350911
    Abstract: The invention relates to a process for the preparation of amines by hydrogenation of nitro compounds, which comprises carrying out the hydrogenation in a vertical reactor whose length is greater than its diameter, having a downward-facing jet nozzle arranged in the upper region of the reactor through which the starting materials and the reaction mixture are fed in, and having an outlet at any desired point of the reactor, through which the reaction mixture is fed back to the jet nozzle in an external circuit by means of a conveying means, and having flow reversal in the lower region of the reactor.
    Type: Grant
    Filed: June 11, 2001
    Date of Patent: February 26, 2002
    Assignee: BASF Aktiengesellschaft
    Inventors: Michael Sander, Ulrich Penzel, Hans Volkmar Schwarz, Eckhard Ströfer, Dieter Stützer, Jörn Müller, Markus Maurer, Peter Zehner, Ekkehard Schwab, Ralf Böhling, Dominic Vanoppen
  • Patent number: 4778929
    Abstract: Olefinically unsaturated compounds are hydroformylated continuously, the olefin being passed into the lower region of the reactor, under from 1 to 40 bar and at from 50.degree. to 140.degree. C. with the aid of a rhodium complex as a catalyst in a hydroformylation reactor having a liquid reaction zone which occupies about 60-85% of the reactor volume, the gaseous products and reactants being removed from the hydroformylation reactor, the products being isolated and the major part of the remaining gas being recycled to the reactor by the cycle gas method, by a process in which from 20 to 80% by volume of the cycle gas is fed into the hydroformylation reactor above the liquid reaction zone and/or below the liquid surface in the top fourth of the liquid reaction zone.
    Type: Grant
    Filed: July 8, 1987
    Date of Patent: October 18, 1988
    Assignee: BASF Aktiengesellschaft
    Inventors: Peter Zehner, Herwig Hoffmann, Wolfgang Richter, Dieter Stuetzer, Max Strohmeyer, Helmut Walz, Erich Weippert