Patents by Inventor Dietger van Antwerpen

Dietger van Antwerpen has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 11922568
    Abstract: In various embodiments, a finite aperture omni-directional camera is modeled by aligning a finite aperture lens and focal point with the omni-directional part of the projection. For example, each point on an image plane maps to a direction in camera space. For a spherical projection, the lens can be orientated along this direction and the focal point is picked along this direction at focal distance from the lens. For a cylindrical projection, the lens can be oriented along the projected direction on the two dimensional (2D) xz-plane, as the projection is not omni-directional in the y direction. The focal point is picked along the (unprojected) direction so its projection on the xz-plane is at focal distance from the lens. The final outgoing ray can be constructed by sampling of point on this oriented lens and shooting a ray from there through the focal point.
    Type: Grant
    Filed: June 27, 2022
    Date of Patent: March 5, 2024
    Assignee: NVIDIA Corporation
    Inventor: Dietger van Antwerpen
  • Publication number: 20220335684
    Abstract: In various embodiments, a finite aperture omni-directional camera is modeled by aligning a finite aperture lens and focal point with the omni-directional part of the projection. For example, each point on an image plane maps to a direction in camera space. For a spherical projection, the lens can be orientated along this direction and the focal point is picked along this direction at focal distance from the lens. For a cylindrical projection, the lens can be oriented along the projected direction on the two dimensional (2D) xz-plane, as the projection is not omni-directional in the y direction. The focal point is picked along the (unprojected) direction so its projection on the xz-plane is at focal distance from the lens. The final outgoing ray can be constructed by sampling of point on this oriented lens and shooting a ray from there through the focal point.
    Type: Application
    Filed: June 27, 2022
    Publication date: October 20, 2022
    Inventor: Dietger van Antwerpen
  • Patent number: 11380049
    Abstract: In various embodiments, a finite aperture omni-directional camera is modeled by aligning a finite aperture lens and focal point with the omni-directional part of the projection. For example, each point on an image plane maps to a direction in camera space. For a spherical projection, the lens can be orientated along this direction and the focal point is picked along this direction at focal distance from the lens. For a cylindrical projection, the lens can be oriented along the projected direction on the two dimensional (2D) xz-plane, as the projection is not omni-directional in the y direction. The focal point is picked along the (unprojected) direction so its projection on the xz-plane is at focal distance from the lens. The final outgoing ray can be constructed by sampling of a point on this oriented lens and shooting a ray from there through the focal point.
    Type: Grant
    Filed: July 8, 2020
    Date of Patent: July 5, 2022
    Assignee: NVIDIA Corporation
    Inventor: Dietger van Antwerpen
  • Publication number: 20200372704
    Abstract: In various embodiments, a finite aperture omni-directional camera is modeled by aligning a finite aperture lens and focal point with the omni-directional part of the projection. For example, each point on an image plane maps to a direction in camera space. For a spherical projection, the lens can be orientated along this direction and the focal point is picked along this direction at focal distance from the lens. For a cylindrical projection, the lens can be oriented along the projected direction on the two dimensional (2D) xz-plane, as the projection is not omni-directional in the y direction. The focal point is picked along the (unprojected) direction so its projection on the xz-plane is at focal distance from the lens. The final outgoing ray can be constructed by sampling of point on this oriented lens and shooting a ray from there through the focal point.
    Type: Application
    Filed: July 8, 2020
    Publication date: November 26, 2020
    Inventor: Dietger van Antwerpen
  • Patent number: 10748333
    Abstract: In various embodiments, a finite aperture omni-directional camera is modeled by aligning a finite aperture lens and focal point with the omni-directional part of the projection. For example, each point on an image plane maps to a direction in camera space. For a spherical projection, the lens can be orientated along this direction and the focal point is picked along this direction at focal distance from the lens. For a cylindrical projection, the lens can be oriented along the projected direction on the two dimensional (2D) xz-plane, as the projection is not omni-directional in the y direction. The focal point is picked along the (unprojected) direction so its projection on the xz-plane is at focal distance from the lens. The final outgoing ray can be constructed by sampling of point on this oriented lens and shooting a ray from there through the focal point.
    Type: Grant
    Filed: January 26, 2018
    Date of Patent: August 18, 2020
    Assignee: NVIDIA Corporation
    Inventor: Dietger van Antwerpen
  • Patent number: 10565781
    Abstract: A method of adjusting a shading normal vector for a computer graphics rendering program. Calculating a normalized shading normal vector pointing outwards from an origin point on a tessellated surface modeling a target surface to be rendered. Calculating a normalized outgoing reflection vector projecting from the origin point for an incoming view vector directed towards the origin point and reflecting relative to the normalized shading normal vector. Calculating a correction vector such that when the correction vector is added to the normalized outgoing reflection vector a resulting vector sum is yielded that is equal to a maximum reflection vector, wherein the maximum reflection vector is on or above the tessellated surface. Calculating a normalized maximum reflection vector by normalizing a vector sum of the correction vector plus the maximum reflection vector.
    Type: Grant
    Filed: October 6, 2015
    Date of Patent: February 18, 2020
    Assignee: Nvidia Corporation
    Inventors: Pascal Gautron, Dietger van Antwerpen, Carsten Waechter, Matthias Raab
  • Publication number: 20180276879
    Abstract: In various embodiments, a finite aperture omni-directional camera is modeled by aligning a finite aperture lens and focal point with the omni-directional part of the projection. For example, each point on an image plane maps to a direction in camera space. For a spherical projection, the lens can be orientated along this direction and the focal point is picked along this direction at focal distance from the lens. For a cylindrical projection, the lens can be oriented along the projected direction on the two dimensional (2D) xz-plane, as the projection is not omni-directional in the y direction. The focal point is picked along the (unprojected) direction so its projection on the xz-plane is at focal distance from the lens. The final outgoing ray can be constructed by sampling of point on this oriented lens and shooting a ray from there through the focal point.
    Type: Application
    Filed: January 26, 2018
    Publication date: September 27, 2018
    Inventor: Dietger van Antwerpen
  • Publication number: 20170053433
    Abstract: A method of adjusting a shading normal vector for a computer graphics rendering program. Calculating a normalized shading normal vector pointing outwards from an origin point on a tessellated surface modeling a target surface to be rendered. Calculating a normalized outgoing reflection vector projecting from the origin point for an incoming view vector directed towards the origin point and reflecting relative to the normalized shading normal vector. Calculating a correction vector such that when the correction vector is added to the normalized outgoing reflection vector a resulting vector sum is yielded that is equal to a maximum reflection vector, wherein the maximum reflection vector is on or above the tessellated surface. Calculating a normalized maximum reflection vector by normalizing a vector sum of the correction vector plus the maximum reflection vector.
    Type: Application
    Filed: October 6, 2015
    Publication date: February 23, 2017
    Inventors: Pascal Gautron, Dietger van Antwerpen, Carsten Waechter, Matthias Raab