Patents by Inventor Diether Maier

Diether Maier has filed for patents to protect the following inventions. This listing includes patent applications that are pending as well as patents that have already been granted by the United States Patent and Trademark Office (USPTO).

  • Patent number: 9964611
    Abstract: An NMR spectrometer (1?) has a sample changer (4?) with at least one cylindrical sample holder (7?, 7?) for receiving an elongated NMR sample at a loading position (5) and for transferring the NMR sample into the measurement volume at a transfer position (6). The sample holder is open in an upward direction and the cylinder axis of the cylindrical sample holder is inclined at the loading position by an angle of inclination a of between 30 and 60 degrees with respect to the vertical and it extends vertically at the transfer position. A positioning device is provided, which transfers the NMR sample at or after the transfer position into the measuring position in the measurement volume with a vertically aligned sample axis of the NMR sample. The spectrometer enables a more ergonomically favorable feed of the sample.
    Type: Grant
    Filed: August 13, 2014
    Date of Patent: May 8, 2018
    Assignee: Bruker BioSpin GmbH
    Inventors: Thomas Bocher, Diether Maier, Volker Reiss
  • Publication number: 20150061678
    Abstract: An NMR spectrometer (1?) has a sample changer (4?) with at least one cylindrical sample holder (7?, 7?) for receiving an elongated NMR sample at a loading position (5) and for transferring the NMR sample into the measurement volume at a transfer position (6). The sample holder is open in an upward direction and the cylinder axis of the cylindrical sample holder is inclined at the loading position by an angle of inclination a of between 30 and 60 degrees with respect to the vertical and it extends vertically at the transfer position. A positioning device is provided, which transfers the NMR sample at or after the transfer position into the measuring position in the measurement volume with a vertically aligned sample axis of the NMR sample. The spectrometer enables a more ergonomically favorable feed of the sample.
    Type: Application
    Filed: August 13, 2014
    Publication date: March 5, 2015
    Inventors: Thomas Bocher, Diether Maier, Volker Reiss
  • Patent number: 7795871
    Abstract: A nuclear magnetic resonance (NMR) resonator (1; 31) comprising an inductive section (6) and a capacitive section (6a), wherein the inductive section (6) is band-shaped and surrounds a substantially cylindrical volume under investigation (5), wherein the capacitive section (6a) is formed from one or more discrete capacitor(s) (13; 13a, 13b, 13c, 13d), and wherein the ends (7, 8) of the band-shaped inductive section (6) are connected through one or several capacitor(s) (13; 13a, 13b, 13c, 13d) of the capacitive section (6a), is characterized in that the inductive section (6) is formed from a dielectric flexible foil (2) which is conductively coated on both sides and the ends (7, 8) of the band-shaped inductive section (6) overlap, wherein the outer coating (4) of the inner end (7) is electrically conductingly connected to the inner coating (3) of the outer end (8), with one or more through-connections (10) being provided in the area of the inner end (7) of the band-shaped inductive section (6), and the outer c
    Type: Grant
    Filed: November 12, 2008
    Date of Patent: September 14, 2010
    Assignee: Bruker Biospin GmbH
    Inventors: Diether Maier, Michael Maixner
  • Publication number: 20090121716
    Abstract: A nuclear magnetic resonance (NMR) resonator (1; 31) comprising an inductive section (6) and a capacitive section (6a), wherein the inductive section (6) is band-shaped and surrounds a substantially cylindrical volume under investigation (5), wherein the capacitive section (6a) is formed from one or more discrete capacitor(s) (13; 13a, 13b, 13c, 13d), and wherein the ends (7, 8) of the band-shaped inductive section (6) are connected through one or several capacitor(s) (13; 13a, 13b, 13c, 13d) of the capacitive section (6a), is characterized in that the inductive section (6) is formed from a dielectric flexible foil (2) which is conductively coated on both sides and the ends (7, 8) of the band-shaped inductive section (6) overlap, wherein the outer coating (4) of the inner end (7) is electrically conductingly connected to the inner coating (3) of the outer end (8), with one or more through-connections (10) being provided in the area of the inner end (7) of the band-shaped inductive section (6), and the outer c
    Type: Application
    Filed: November 12, 2008
    Publication date: May 14, 2009
    Applicant: Bruker BioSpin GmbH
    Inventors: Diether Maier, Michael Maixner
  • Patent number: 7397247
    Abstract: An apparatus for determining a quantitative property of a sample substance by means of magnetic resonance is disclosed. The apparatus comprises a conveyor for conveying sample containers containing the sample substance through a measuring station. The measuring station comprises a magnet system for generating a constant magnetic field of high homogeneity. The measuring station, further, comprises a probe head adapted for letting sample containers be conveyed therethrough and for generating a high frequency magnetic field. A magnetic resonance measuring unit determines the quantitative property of the sample substance contained in the probe head. The probe head excites and detects, resp., the magnetic resonance essentially only within that section of the sample container which contains the sample substance. The probe head comprises a split-ring resonator which, as seen in a conveying direction of the conveyor, has a passage cross-section for letting run the sample containers therethrough.
    Type: Grant
    Filed: February 2, 2006
    Date of Patent: July 8, 2008
    Assignee: Bruker BioSpin GmbH
    Inventors: Marian Kloza, Dieter Schmalbein, Diether Maier
  • Patent number: 7391212
    Abstract: A resonator apparatus and a method for electron spin resonance (ESR) measurements are disclosed. The resonator apparatus comprises a dielectric resonator and a sample vessel extending through the resonator. The sample vessel is configured as one single flexible tube. Means are provided for conveying a liquid sample substance through the flexible tube. According to the method a liquid sample substance is guided through the sample vessel, wherein the sample substance is gated by cyclically conveying and stopping, resp., a flow of the sample substance. A measurement is conducted within the resonator when the flow of sample substance is stopped.
    Type: Grant
    Filed: July 15, 2002
    Date of Patent: June 24, 2008
    Assignee: Bruker BioSpin GmbH
    Inventors: Diether Maier, Dieter Schmalbein, Andreas Kamlowski, Marian Kloza, Peter Hoefer
  • Publication number: 20060192557
    Abstract: An apparatus for determining a quantitative property of a sample substance by means of magnetic resonance is disclosed. The apparatus comprises a conveyor for conveying sample containers containing the sample substance through a measuring station. The measuring station comprises a magnet system for generating a constant magnetic field of high homogeneity. The measuring station, further, comprises a probe head adapted for letting sample containers be conveyed therethrough and for generating a high frequency magnetic field. A magnetic resonance measuring unit determines the quantitative property of the sample substance contained in the probe head. The probe head excites and detects, resp., the magnetic resonance essentially only within that section of the sample container which contains the sample substance. The probe head comprises a split-ring resonator which, as seen in a conveying direction of the conveyor, has a passage cross-section for letting run the sample containers therethrough.
    Type: Application
    Filed: February 2, 2006
    Publication date: August 31, 2006
    Applicant: Bruker BioSpin GmbH
    Inventors: Marian Kloza, Dieter Schmalbein, Diether Maier
  • Patent number: 6791324
    Abstract: A probehead for an electron spin resonance (ESR) dosimeter comprises a resonator and an insert extending into the resonator. The insert has a guide channel for bringing a sample into the resonator. The sample comprises a dosimeter substance. The guide channel is configured for receiving and guiding a test strip. The insert is provided with a first machine-readable code imprint. The insert is provided with at least one reference sample. A pressurized air unit is provided for blowing the sample out of the resonator after completion of a measurement. The insert has an opening on an upper side of the resonator. The opening is openly accessible for manually inserting dosimeter pills thereinto. The insert, further, is provided on the upper side with a pressurized air connector. The pressurized air connector is connected to an orifice via a pressurized air channel within the insert. The orifice is located within a lower, otherwise closed bottom of the guide channel.
    Type: Grant
    Filed: July 17, 2002
    Date of Patent: September 14, 2004
    Assignee: Bruker Biospin GmbH
    Inventors: Diether Maier, Dieter Schmalbein, Jin Jie Jiang, Ralph T. Weber, Andreas Kamlowski, Thomas Schmidt
  • Publication number: 20030155921
    Abstract: A probehead for an electron spin resonance (ESR) dosimeter comprises a resonator and an insert extending into the resonator. The insert has a guide channel for bringing a sample into the resonator. The sample comprises a dosimeter substance. The guide channel is configured for receiving and guiding a test strip. The insert is provided with a first machine-readable code imprint. The insert is provided with at least one reference sample. A pressurized air unit is provided for blowing the sample out of the resonator after completion of a measurement. The insert has an opening on an upper side of the resonator. The opening is openly accessible for manually inserting dosimeter pills thereinto. The insert, further, is provided on the upper side with a pressurized air connector. The pressurized air connector is connected to an orifice via a pressurized air channel within the insert. The orifice is located within a lower, otherwise closed bottom of the guide channel.
    Type: Application
    Filed: July 17, 2002
    Publication date: August 21, 2003
    Applicant: Bruker BioSpin GmbH
    Inventors: Diether Maier, Dieter Schmalbein, Jin Jie Jiang, Ralph T. Weber, Andreas Kamlowski, Thomas Schmidt
  • Publication number: 20030155916
    Abstract: A resonator apparatus and a method for electron spin resonance (ESR) measurements are disclosed. The resonator apparatus comprises a dielectric resonator and a sample vessel extending through the resonator. The sample vessel is configured as one single flexible tube. Means are provided for conveying a liquid sample substance through the flexible tube. According to the method a liquid sample substance is guided through the sample vessel, wherein the sample substance is gated by cyclically conveying and stopping, resp., a flow of the sample substance. A measurement is conducted within the resonator when the flow of sample substance is stopped.
    Type: Application
    Filed: July 15, 2002
    Publication date: August 21, 2003
    Applicant: Bruker BioSpin GmbH
    Inventors: Diether Maier, Dieter Schmalbein, Andreas Kamlowski, Marian Kloza, Peter Hoefer